您好,欢迎来到99网。
搜索
您的当前位置:首页最新高二数学必修课重点知识点总结(8篇)

最新高二数学必修课重点知识点总结(8篇)

来源:99网
最新高二数学必修课重点知识点总结(8篇)

最新高二数学必修课重点知识点总结(8篇)

高二数学必修课知识点总结怎么写才能发挥它的作用呢?总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,下面是小编给大家整理的最新高二数学必修课重点知识点总结,仅供参考希望能帮助到大家。

最新高二数学必修课重点知识点总结篇1 (1)总体和样本:

①在统计学中,把研究对象的全体叫做总体. ②把每个研究对象叫做个体. ③把总体中个体的总数叫做总体容量.

④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量.

(2)简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

(3)简单随机抽样常用的方法: ①抽签法 ②随机数表法 ③计算机模拟法

在简单随机抽样的样本容量设计中,主要考虑: ①总体变异情况; ②允许误差范围; ③概率保证程度。 (4)抽签法:

①给调查对象群体中的每一个对象编号;

②准备抽签的工具,实施抽签;

③对样本中的每一个个体进行测量或调查 最新高二数学必修课重点知识点总结篇2

1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);

试验的全部结果所构成的区域长度(面积或体积) 3、几何概型的特点:

1)试验中所有可能出现的结果(基本事件)有无限多个; 2)每个基本事件出现的可能性相等、

4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A的概率可以用“事件A包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。

最新高二数学必修课重点知识点总结篇3

第一章:集合和函数的基本概念,错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。次一级的知识点就是集合的韦恩图,会画图,集合的

“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,的方法是写在笔记本上,每天至少看上一遍。

第二章:基本初等函数:指数、对数、幂函数三大函数的运算性质及图像。函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考常错点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化问题也要了解清楚。

第三章:函数的应用。主要就是函数与方程的结合。其实就是的实根,即函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间的灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这是这一章的难点,这几种证明方法都要记得,多练习强化。这二次函数的零点的Δ判别法,这个倒不算难。

最新高二数学必修课重点知识点总结篇4 一、直线与方程 (1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的'直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示。但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:直线斜率为k,直线在y轴上的截距为b ③两点式:()直线两点, ④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。 ⑤一般式:(A,B不全为0)

注意:各式的适用范围特殊的方程如:

平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数) (二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数) (三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点; (ⅱ)过两条直线,的交点的直线系方程为 (为参数),其中直线不在直线系中。 (6)两直线平行与垂直当,时,;

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点相交 交点坐标即方程组的一组解。 方程组无解;方程组有无数解与重合

(8)两点间距离公式:设是平面直角坐标系中的两个点, 则

(9)点到直线距离公式:一点到直线的距离 (10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。 最新高二数学必修课重点知识点总结篇5 一、随机事件 主要掌握好(三四五)

(1)事件的三种运算:并(和)、交(积)、差;注意差A—B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互。

二、概率定义

(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率; (2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;

(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

三、概率性质与公式

(1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

(2)差:P(A—B)=P(A)—P(AB),特别地,如果B包含于A,则P(A—B)=P(A)—P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互,则P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。它是由因求果,

贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

如果一个事件B可以在多种情形(原因)A1,A2,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。

(5)二项概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互)时,要考虑二项概率公式。

最新高二数学必修课重点知识点总结篇6 一、集合、简易逻辑(14课时,8个) 1、集合; 2、子集; 3、补集; 4、交集; 5、并集; 6、逻辑连结词; 7、四种命题; 8、充要条件。

二、函数(30课时,12个) 1、映射; 2、函数; 3、函数的单调性; 4、反函数;

5、互为反函数的函数图象间的关系;

6、指数概念的扩充; 7、有理指数幂的运算; 8、指数函数; 9、对数;

10、对数的运算性质; 11、对数函数。 12、函数的应用举例。 三、数列(12课时,5个) 1、数列;

2、等差数列及其通项公式; 3、等差数列前n项和公式; 4、等比数列及其通顶公式; 5、等比数列前n项和公式。 四、三角函数(46课时,17个) 1、角的概念的推广; 2、弧度制;

3、任意角的三角函数; 4、单位圆中的三角函数线; 5、同角三角函数的基本关系式; 6、正弦、余弦的诱导公式; 7、两角和与差的正弦、余弦、正切; 8、二倍角的正弦、余弦、正切; 9、正弦函数、余弦函数的图象和性质; 10、周期函数; 11、函数的奇偶性; 12、函数的图象;

13、正切函数的图象和性质; 14、已知三角函数值求角; 15、正弦定理; 16、余弦定理;

17、斜三角形解法举例。 五、平面向量(12课时,8个) 1、向量;

2、向量的加法与减法; 3、实数与向量的积; 4、平面向量的坐标表示; 5、线段的定比分点; 6、平面向量的数量积; 7、平面两点间的距离; 8、平移。

六、不等式(22课时,5个) 1、不等式;

2、不等式的基本性质; 3、不等式的证明; 4、不等式的解法; 5、含绝对值的不等式。

七、直线和圆的方程(22课时,12个) 1、直线的倾斜角和斜率; 2、直线方程的点斜式和两点式; 3、直线方程的一般式; 4、两条直线平行与垂直的条件; 5、两条直线的交角; 6、点到直线的距离;

7、用二元一次不等式表示平面区域; 8、简单线性规划问题; 9、曲线与方程的概念; 10、由已知条件列出曲线方程; 11、圆的标准方程和一般方程; 12、圆的参数方程。

最新高二数学必修课重点知识点总结篇7

已知函数有零点(方程有根)求参数取值常用的方法 1、直接法:

直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

2、分离参数法:

先将参数分离,转化成求函数值域问题加以解决。 3、数形结合法:

先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

最新高二数学必修课重点知识点总结篇8

(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

然说难度比较大,我建议考生,采取分部得分整个试

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务