Multi-ConnectivityProblems
(ExtendedAbstract)
ArturCzumaj
andAndrzejLingas
DepartmentofComputerandInformationScience,NewJerseyInstituteofTechnology,
Newark,NJ07102-1982,USA.czumaj@cis.njit.edu
DepartmentofComputerScience,LundUniversity,Box118,S-22100Lund,Sweden.
Andrzej.Lingas@cs.lth.seAbstract.Wepresentnewpolynomial-timeapproximationschemes(PTAS)forseveralbasicminimum-costmulti-connectivityproblemsingeometricalgraphs.Wefocusonlowconnectivityrequirements.Eachofourschemeseithersignifi-cantlyimprovesthepreviouslyknownuppertime-boundoristhefirstPTASfortheconsideredproblem.
Weprovidearandomizedapproximationschemeforfindingabiconnectedgraphspanningasetofpointsinamulti-dimensionalEuclideanspaceandhavingtheexpectedtotalcostwithinoftheoptimum.Foranyconstantdimensionand,ourschemerunsintime.ItcanbeturnedintoLasVegasonewith-outaffectingitsasymptotictimecomplexity,andalsoefficientlyderandomized.Theonlypreviouslyknowntrulypolynomial-timeapproximation(randomized)schemeforthisproblemrunsinexpectedtimeinthesimplestplanarcase.Theefficiencyofourschemereliesontransformationsofnearlyoptimallowcostspecialspannersintosub-multigraphshavinggoodde-compositionandapproximationpropertiesandasimplesubgraphconnectivitycharacterization.Byusingmerelythespannertransformations,weobtainaveryfastpolynomial-timeapproximationschemeforfindingaminimum-cost-edgeconnectedmultigraphspanningasetofpointsinamulti-dimensionalEuclidean
.space.Foranyconstantdimension,,and,thisPTASrunsintime
Furthermore,byshowingalow-costtransformationofa-edgeconnectedgraphmaintainingthe-edgeconnectivityanddevelopingnoveldecompositionprop-erties,wederiveaPTASforEuclideanminimum-cost-edgeconnectivity.Itissubstantiallyfasterthanthatpreviouslyknown.
Finally,byextendingourtechniques,weobtainthefirstPTASfortheproblemofEuclideanminimum-costSteinerbiconnectivity.Thisschemerunsintime
foranyconstantdimensionand.Asabyproduct,wegetthefirst
knownnon-trivialupperboundonthenumberofSteinerpointsinanoptimalsolutiontoaninstanceofEuclideanminimum-costSteinerbiconnectivity.
1Introduction
Multi-connectivitygraphproblemsarecentralinalgorithmicgraphtheoryandhavenumerousapplicationsincomputerscienceandoperationresearch[2,10,22].They
arealsoveryimportantinthedesignofnetworksthatariseinpracticalsituations[2,10].Typicalapplicationareasincludetelecommunication,computerandroadnetworks.Lowdegreeconnectivityproblemsforgeometricalgraphsintheplanecanoftencloselyapproximatesuchpracticalconnectivityproblems(see,e.g.,thediscussionin[10,22]).
Inthispaper,weprovideathoroughtheoreticalstudyoftheseproblemsinEu-clideanspace(i.e.,forgeometricalgraphs).Weconsiderseveralbasicconnectivityproblemsofthefollowingform:foragivensetofpointsintheEuclideanspace,findaminimum-costsubgraphofacompletegraphonthatsatisfiesapriorigivencon-nectivityrequirements.ThecostofsuchasubgraphisequaltothesumoftheEuclideandistancesbetweenadjacentvertices.
Themostclassicalproblemweinvestigateisthe(Euclidean)minimum-cost-vertexconnectedspanningsubgraphproblem.WearegivenasetofpointsintheEu-andtheaimistofindaminimum-cost-vertexconnectedgraphspan-clideanspace
ningpointsin(i.e.,asubgraphofthecompletegraphon).Bysubstitutingtherequirementof-edgeconnectivityforthatof-vertexconnectivity,weobtainthecor-responding(Euclidean)minimum-cost-edgeconnectedspanningsubgraphproblem.Wetermthegeneralizationofthelatterproblemwhichallowsforparalleledgesintheoutputgraphspanningasthe(Euclidean)minimum-cost-edgeconnectedspanningsub-multigraphproblem.
Theconceptofminimum-cost-connectivitynaturallyextendstoincludethatofEuclideanSteiner-connectivitybyallowingtheuseofadditionalvertices,calledSteinerpoints.Theproblemof(Euclidean)minimum-costSteiner-vertex-(or,-edge-)con-nectivityistofindaminimum-costgraphonasupersetoftheinputpointsetinwhichis-vertex-(or,-edge-)connectedwithrespectto.For,itissimplythefamousSteinerminimaltree(SMT)problem,whichhasbeenveryextensivelystudiedintheliterature(see,e.g.,[11,16]).
-hardwhenrestrictedtoSincealltheaforementionedproblemsareknowntobe
eventwo-dimensionsfor[8,18],wefocusonefficientconstructionsofgoodap-proximations.Weaimatdevelopingapolynomial-timeapproximationscheme,aPTAS.Thisisafamilyofalgorithmssuchthat,foreachfixed,runsintime
-approximation[15].polynomialinthesizeoftheinputandproducesa
Previouswork.Despitethepracticalrelevanceofthemulti-connectivityproblemsfor
geometricalgraphsandthevastamountofpracticalheuristicresultsreported(see,e.g.,[9,10,22,23])verylittletheoreticalresearchhasbeendonetowardsdevelopingeffi-cientapproximationalgorithmsfortheseproblems.Thiscontrastswiththeveryrichandsuccessfultheoreticalinvestigationsofthecorrespondingproblemsingeneralmetricspacesandforgeneralweightedgraphs(see,e.g.,[10,12,15,17]).Evenforthesimplest(andmostfundamental)problemconsideredinourpaper,thatoffindingaminimum-costbiconnectedgraphspanningagivensetofpointsintheEuclideanplane,foralongtimeobtainingapproximationsachievingbetterthana
,thealgorithmrunsinexpectedtime.Notethatplaysalargeroleintherunningtimeoftheseschemes.Infact,there-sultfrom[6]impliesthatforevery,evenfornoPTASexistsunless.Thus,theproblemoffindingaminimum-costbiconnectedspanning
)eveninthemetriccase.Hence,subgraphdoesnothaveaPTAS(unless
ourrestrictiontoEuclideangraphsinlowdimensionsplaysanessentialroleintheseschemes.
Arelated,butsignificantlyweakerresulthasbeenalsopresentedin[5].HereanoptimalsolutiontotheproblemwithoutallowingSteinerpointsisapproximatedtoanarbitrarilyclosedegreeviatheinclusionofSteinerpoints.
WhenSteinerpointsareallowedintheminimum-costSteiner-vertex-(or-edge-)
,i.e.,fortheconnectivityproblem,theonlynon-trivialresultsareknownfor
minimumSteinertreeproblem(SMT).Inthebreakthroughpaper[3],AroradesignedaPTASforSMTforallconstants.Mitchellindependentlyobtainedasimilarresultfor
[19].SoonafterRaoandSmith[20]offeredasignificantlyfasterPTASforSMTrunningintimeforaconstant.For,theonlyresultweareawareofisa
and,runsinexpectedtime.Thecorrespondingschemein[6]requires
timewhenandforanyconstant.
Furthermore,wepresentaseriesofnewstructuralresultsaboutminimum-costbi-connectedEuclideanSteinergraphs,e.g.,adecompositionofaminimum-costbicon-nectedSteinergraphintominimalSteinertrees.WeusetheseresultstoderivethefirstPTASfortheminimum-costSteinerbiconnectivityandSteinertwo-edgeconnectivity
.Asproblems.Foranyconstantand,ourschemerunsinexpectedtime
abyproductoftheaforementioneddecomposition,wealsoobtainthefirstknownnon-trivialupperboundontheminimumnumberofSteinerpointsinanoptimalsolutionto
.an-pointinstanceofEuclideanminimum-costSteinerbiconnectivity,whichis
Techniques.TheonlytwoknownPTASapproachestoEuclideanminimum-cost-vertex-(or,-edge-)connectivity(see[5,6])arebasedondecompositionsof-connected
EuclideangraphscombinedwiththegeneralframeworkproposedrecentlybyArora[3]fordesigningPTASforEuclideanversionsofTSP,MinimumSteinerTree,Min-CostPerfectMatching,-TSP,etc.(ForanotherrelatedframeworkforgeometricPTASsee[19].)IncontrasttoallpreviousapplicationsofArora’sframeworkusingSteinerpointsintheso-calledpatchingprocedures[3,5],apatchingmethodfreeofSteinerpointsisgiven[6].(Steinerpointsofdegreeatleastthreearedifficulttoremovefor-connectivitywhen.ThisshouldbecomparedtotheproblemsconsideredbyArora[3]andRaoandSmith[20]wheretheoutputgraphshaveverysimpleconnectiv-itystructure.)Thisdisallowancein[6]makesithardtoprovestrongglobalstructuralpropertiesofcloseapproximationswithrespecttoagivengeometricpartition.
StructuraltheoremsinArora’sframeworktypicallyasserttheexistenceofarecur-sivepartitionofaboxcontainingtheinputpoints(perturbedtonearestgridpoints)intocubessuchthattheoptimalsolutioncanbecloselyapproximatedbyasocalled
-lightsolutioninwhich,foreverycube,thereareveryfewedgescrossingitsboundaries.Thestructuraltheoremin[6]yieldsonlyweakerstructuralpropertiesofapproximatesolutions(-graynessand-blueness)whichboundsolelythenumberofcrossingsbetweenthecubeboundariesandtheedgeshavingexactlyoneendpointwithinthecube.Thatboundisconstantfor“shortedges”(i.e.,edgeshavinglengthwithinaconstantfactoroftheside-lengthofthecube)anditis
for“longedges”(assumingthat,,andareconstant).Furthermore,mostofthecrossingsarelocatedinoneofprespecifiedpoints.Theweakerstructuralproperties
edgeshavingexactly(especiallythefactthattheremightbeasmanyas
oneendpointinacubeinthepartition)leadtothehightimecomplexityofthemaindynamicprogrammingprocedureinthePTASpresentedin[6].
WetakeanovelapproachinordertoguaranteestrongerstructuralpropertiesofapproximatesolutionsdisallowingSteinerpoints.Ourapproachispartlyinspiredbytherecentuseofspannerstospeed-upPTASforEuclideanversionsofTSPbyRaoand
,weareabletoproveasubstantiallystrongerstructuralSmith[20].Ineffect,for
property(-local-lightness,seeTheorem3.1)thanthatin[6].Ityieldsaconstantupperboundonthenumberoflongedgeswithexactlyoneendpointinacubeinthepartitionprovidedthatandareconstant.
Ourproofreliesonaseriesoftransformationsofa-spannerfortheinputpointset,havinglowcostandthesocalledisolationproperty[1],intoan-locally-light-edgeconnectedmultigraphspanningtheinputsetandhavingnearlyoptimalcost.Withoutanyincreaseinthecost,incase,theaforementionedmultigraphisefficientlytransformedintoabiconnectedgraphspanningtheinputpointset.Fur-thermore,forthepurposeofdynamicprogramming,wesucceedtouseamoreefficient
thanthatusedin[5,6].subgraphconnectivitycharacterizationincase
Byusingmerelytheaforementionedspannertransformations,wealsoobtainthefastrandomizedPTASforfindingaminimum-cost-edgeconnectedmultigraphspan-ningasetofpointsinamulti-dimensionalEuclideanspace.
Itseemsunlikelythatacost-efficienttransformationofa-edgeconnectedmulti-graphintoa-edgeconnectedgraphonthesamepointsetexists.Forthisreason,incaseof-edgeconnectivity,weconsideranarbitrary-edgeconnectedgraphonthein-putpointsetinsteadofaspanner,andderiveaseriesofcost-efficienttransformationsoftheformerintoan-locally-light-edgeconnectedgraphontheinputset.Thetransfor-mationsyieldthefastestknownrandomizedPTASforEuclideanminimum-cost-edgeconnectivity.
Ourinvestigationsofspannerswiththeisolationproperty,theexplicituseofmulti-graphsinsteadofgraphs,andtheproofthatnearlyoptimal,lowcostspannerspossess-ingtheisolationpropertyinduce-locally-lightsub-multigraphshavinggoodapproxi-mationpropertiesarethemainsourcesoftheefficiencyoftheapproximationschemesforEuclideanminimum-costconnectivityproblems(withoutSteinerpoints)presentedinthispaper.
ByextendingtheaforementionedtechniquestoincludeSteinerpoints,derivingthedecompositionofaminimum-costbiconnectedSteinergraphintominimalSteinertrees,andusingthegeneralizationof-spannertoincludeSteinerpointscalled-banyansin[20,21],weobtainthefirstPTASforminimum-costSteinerbiconnectivityandSteinertwo-edgeconnectivity.
Organizationofthepaper.Section2providesbasicterminologyusedinourapproxi-mationschemes.InSection3weoutlineournewPTASforEuclideanminimum-costbiconnectivity.Section4sketchesthePTASforEuclideanminimum-cost-edgecon-nectivityinmultigraphs.InSection5wederiveourPTASforEuclideanminimum-cost-edgeconnectivityingraphs.Section6presentsthePTASforminimum-costSteinerbiconnectivityandSteinertwo-edgeconnectivity.Duetospacelimitationsmostofourtechnicalclaimsandtheirproofsarepostponedtothefullversionofthepaper.
2Definitions
Weconsidergeometricalgraphs.Ageometrical(multi-)graphonasetofpointsin
isaweighted(multi-)graphwhosesetofverticesisexactlyandforwhichthecostofanedgeistheEuclideandistancebetweenitsendpoints.The(total)costofthe(multi-)graphisthesumofthecostsofitsedges.A(multi-)graphonspansifitisconnected(i.e.,thereisapathinconnectinganytwopointsin).Asin[3,5,6,20],weallowedgestodeviatefromstraight-linesegmentsandspecifythemasstraight-linespaths(i.e.,pathsconsistingofstraight-linesegments)connectingtheendpoints.Thisrelaxationenablestheedgestopassthroughsomeprespecifiedpoints
(calledportals)wheretheymaybe“bent.”Whenalledgesarestraight-linesegments,iscalledastraight-linegraph.Foramultigraph,thegraphinducedbyisthegraphobtainedbyreducingthemultiplicityofeachedgeoftoone.
.WeshalldenotethecostoftheminimumspanningtreeonapointsetbyMST
A-spannerofasetofpointsinisasubgraphofthecompletestraight-linegraph
thelengthoftheshortestpathfromtoinonsuchthatforanytwopoints
thespannerisatmosttimestheEuclideandistancebetweenand[1].
ROOTTLBLBRTRFig.1.Dissectionofaboundingcubein(left)andthecorresponding-arytree(right).Inthetree,thechildrenofeachnodeareorderedfromlefttoright:Top/Leftsquare,Bottom/Leftsquare,Bottom/Rightsquare,andTop/Rightsquare.
Wehierarchicallypartitionthespaceasin[3].Aboundingboxofasetofpointsinisasmallest-dimensionalaxis-parallelcubecontainingthepointsin.A(-ary)dissection[3](seeFigure1)ofasetofpointsinacubeinistherecursivepartitioningofthecubeintosmallersub-cubes,calledregions.Eachregionofvol-umeisrecursivelypartitionedintoregions.A-arytree(foragiven-arydissection)isatreewhoserootcorrespondsto,andwhoseothernon-leafnodescorrespondtotheregionscontainingatleasttwopointsfromtheinputset(see
regionsFigure1).Foranon-leafnodeofthetree,thenodescorrespondingtothe
partitioningtheregioncorrespondingto,arethechildrenofinthetree.
Forany-vector,whereallareintegers,the-shifteddissection[3,6]ofasetofpointsinthecubeinisthedissectionofthe
inthecubeinobtainedfrombytransformingeachpointset
to.Arandomshifteddissectionofasetofpointsinacubeinisan-shifteddissectionofwithandtheelementschosen
.independentlyanduniformlyatrandomfrom
Acrossingofanedgewitharegionfacetofside-lengthinadissectioniscalledrelevantifithasexactlyoneendpointintheregionanditslengthisatmost
exactlyoneendpointintheregion.Agraphis-light[3,20,6]withrespecttoashifteddissectionifforeachregioninthedissectionthereareatmostedgescrossinganyofitsfacets.(Itisimportanttounderstandthedifferencebetweenthesetwolatternotions.)
-dimensionalregionfacetisanAn-regularsetofportalsina
orthogonallatticeofpointsinthefacetwherethespacingbetweentheportalsis
(cf.[3]).Ifagraphis-locally-lightandforeachfacetinany
regioneveryedgecrossesthroughoneoftheportalsinthefacetthenthegraphiscalled-locally-light.
3AlgorithmforEuclideanbiconnectivity
Inthissectionwesketcharandomizedalgorithmthatfindsabiconnectedgraphspan-ningasetofpointsinwhosecostisatmosttimesoftheminimum.Wespecifyhereonlyakeylemmaandthestructuraltheoremanddeferthedetaileddescriptionofthealgorithmanditsanalysistothefullversionofthepaper.
Ouralgorithmstartsbyfindingasmallestboundingboxfortheinputpointsetrescalingtheinputcoordinatessotheboundingboxisoftheform
timestheside-lengthoftheregionthathavepreciselyone
endpointwithintheregionis.
Combiningthislemma,withseverallemmasthatdescribegraphtransformationsreducingthenumberofcrossingsoftheboundariesofaregioninthedissectionbyshortedges,weobtainthefollowingstructuraltheorem.
beanypositiverealsandletbeanypositiveinteger.Next,letTheorem3.1.Let
bea-spannerforawell-roundedsetofpointsinthatsatisfiesthe-isolationpropertywithconstant,,,andhasedgeswhosetotalcostequals.Chooseashifteddissectionuniformlyatrandom.Thenonecanmodifytoagraphspanningsuchthat
–
is-locally-lightwithrespecttotheshifteddissectionchosen,where
,and
–thereexistsa-edgeconnectedmultigraphwhichisaspanningsubgraphofwithpossibleparalleledges(ofmultiplicityatmost),whoseexpected(overthechoiceoftheshifteddissection)costisatmost
therunningtimeis.Thealgorithmcan
beturnedintoaLasVegasonewithoutaffectingthestatedasymptotictimebounds.
Althoughwehaveusedmanyideasfrom[6]inthedesignofouralgorithm,wehavechosenthemethodofpickingarandomshifteddissectiongivenin[3,20,21].ThereforewecanapplyalmostthesameargumentsasthoseusedbyRaoandSmith[21,Sections2.2and2.3]toderandomizeouralgorithmatsmallincreaseofthecostTheorem3.3.Foreverypositivethereexistsadeterministicalgorithmrunningin
thatforeverysetofpointsinproducestime
abiconnectedgraphspanningthepointsandhavingthecostwithinoftheminimum.Inparticular,whenandareconstant,therunningtimeis.Foraconstantandarbitrary
multigraphsuchthattheinducedgraphisasubgraphofisatmost
andtheexpectedcostof
therunningtimeis.Thealgorithm
canbeturnedintoaLasVegasonewithoutaffectingthestatedasymptotictimebounds.
RecalltheuseofSteinerpointsinthefirstattemptofderivingPTASfortheEu-clideanminimum-cost-connectivityin[5]byallowingthemsolelyontheapproxima-tionside.Asabyproduct,wecansubstantiallysubsumetheresultsonminimum-cost-connectivityfrom[5]inthecomplexityaspectbyusingTheorem4.1.
5Euclidean-edgeconnectivityingraphs
Ourspannerapproachtobiconnectivityreliesonanefficienttransformationofatwo-edgeconnectedmultigraphintoabiconnectedgraphonthesamepointsetwithoutanycostincrease.Unfortunately,itseemsthatforthereisnoanysimilarcost-efficienttransformationbetween-edgeconnectedmultigraphsand-vertex-or-edgecon-nectedgraphs.Weshowinthissectionthatanarbitrary(inparticular,minimum-cost)-edgeconnectedgraphspanningawell-roundedpointsetadmitsaseriesoftransfor-mationsresultinginan-locally-light-edgeconnectedgraphonthissetwithasmallincreaseincost.Bysomefurthersmallcostincrease,wecanmakethelattergraph
-locally-lightinordertofacilitateefficientdynamicprogramming.
Thefollowinglemmaplaysacrucialroleinouranalysis.Intuitively,itaimsatprovidingasimilartransformationoftheinputgraphasthatpresentedinLemma3.1.Themaindifficultyhereisinthefactthattheinputgraphmaybearbitrary(whileinLemma3.1wehaveanalyzedgraphshavingtheisolationproperty).
Lemma5.1.Letbeaspanninggraphofawell-roundedpointsetin.Forany
satisfyingthefollowingshifteddissectionof,canbetransformedintoagraph
threeconditions:–ifisdifferentfromthenthetotalcostofissmallerthanthatof,–foranyregionofsizeinthedissectiontherearepositivereals,,greaterthan
–if
is-edgeconnectedthensois
.
Lemma5.1guaranteesthatinthegraphresultingfromthetransformationprovidedinthelemmanoregioninthedissectioniscrossedbytoomanylongedgeshavingtheirlengthoutsidefinitenumberofintervalsoftheform,
theintervals
.Ifthereare
edgeshavingtheirlengthsoutside
and,and
–theexpected(overthechoiceoftheshifteddissection)costoftimeslargerthanthatoftheminimum-costgraph.
isatmost
-local-lightnessisaverysimplecaseofthatof-bluenessTheconceptof
usedin[6].Therefore,wecanuseasimplifiedversionofthedynamicprogrammingmethodof[6]involvingthe-connectivitycharacterizationfrom[5]inordertofindan
-locally-light-edgeconnectedgraphonawell-roundedpointsetsatisfyingtherequirementsofTheorem5.1.ThisyieldsasubstantiallyfasterPTASfortheEuclideanminimum-cost-edgeconnectivitythanthatpresentedin[6].
Theorem5.2.Letbeanarbitrarypositiveintegerandlet.Thereexistsaran-domizedalgorithmthatfindsa-edgeconnectedgraphspanningtheinputsetofpointsinandhavingexpectedcostwithinfromtheoptimum.Theexpectedrunningtimeofthealgorithmis.Inpar-ticular,when,,andareconstant,thentherunningtimeis.
6EuclideanSteinerbiconnectivity
InthissectionweprovidethefirstPTASforEuclideanminimum-costSteinerbiconnec-tivityandEuclideanminimum-costtwo-edgeconnectivity.Foranyconstantdimension
.Ourproofreliesonadecompositionofaand,ourschemerunsintime
minimum-costbiconnectedSteinergraphintominimalSteinertreesandtheuseofthesocalled-banyansintroducedbyRaoandSmith[20,21].Asabyproductofthedecomposition,wederivethefirstknownnon-trivialupperboundontheminimumnumberofSteinerpointsinanoptimalsolutiontoan-pointinstanceofEuclidean
.minimum-costSteinerbiconnectivitywhichis
Sinceforanysetofpointsintheminimum-costofabiconnectedgraphspan-ningisthesameastheminimum-costofatwo-edgeconnectedgraphspanning,intheremainingpartofthissectionweshallfocusonlyontheEuclideanminimum-costSteinerbiconnectivityproblem.Byaseriesoftechnicallemmas,weobtainthefol-lowingcharacterizationofanyoptimalgraphsolutiontotheEuclideanminimum-costSteinerbiconnectivityproblem.
Theorem6.1.Letbeaminimum-costEuclideanSteinerbiconnectedgraphspan-ningasetofpointsin.Thensatisfiesthefollowingconditions:(i)Eachvertexof(inclusiveSteinerpoints)isofdegreeeithertwoorthree.
(ii)Bysplittingeachvertexofcorrespondingtoaninputpointintodegindepen-dentendpointsoftheedges,graphcanbedecomposedintoanumberofminimalSteinertrees.hasatmostSteinerpoints.(iii)
6.1PTAS
Ourspanner-basedmethodforEuclideanminimum-costbiconnectivitycannotbeex-tendeddirectlytoincludeEuclideanminimum-costSteinerbiconnectivitysincespan-nersdonotincludeSteinerpoints.Nevertheless,thedecompositionofanoptimalSteinersolutionintominimumSteinertreesgiveninTheorem6.1opensthepossibilityofusingtheaforementionedbanyanstoallowSteinerpointsforthepurposeofapproximatingtheEuclideanminimumSteinertreeproblemin[20].
-banyanofasetofpointsinisageometricalDefinition6.1.[20]A
graphonasupersetof(i.e.,Steinerpointsareallowed)suchthatforanysubsetof,thecostoftheshortestconnectedsubgraphofthebanyanwhichincludes,isat
timeslargerthantheminimumSteinertreeof.most
RaoandSmithhaveprovedthefollowingusefulresultonbanyansin[20].Lemma6.1.Let.Onecanconstructa-banyanofan-pointsetin
whichusesonlySteinerpointsandhascostwithinafactorof
oftheminimumSteinertreeoftheset.Therunningtimeoftheconstruc-tionis.
Bycombiningthedefinitionofwegetthefollowinglemma.
-banyanwithTheorem6.1(2)andLemma6.1,
letbea-banyanconstructedLemma6.2.Forafinitepointsetin
accordingtoLemma6.1.Letbethemultigraphobtainedfrombydoublingitsedges.Thereisatwo-edgeconnectedsub-multigraphofwhichincludesandwhosecostiswithinoftheminimumcostoftwo-edgeconnectedmultigraphonanysupersetof.
Letbethemultigraphresultingfromscalingandperturbingallthevertices(i.e.,
specifiedinLemma6.2accordingtothealsotheSteinerpoints)ofthemultigraph
firststepinSection3.Theverticesofareonaunitgridand,byarguinganalogouslyasinSection3,aminimum-costtwo-edgeconnectedsub-multigraphof
thatincludesiswithinofaminimum-costtwo-edgeconnectedsub-thatincludes.multigraphof
Thepatchingmethodof[5]appliedtoyieldsthefollowingstructuretheorem.
Theorem6.2.Chooseashifteddissectionofthesetofverticesofthebanyanat
random.Thencanbemodifiedtoamultigraphsuchthat:–is-lightwithrespecttotheshifteddissection,where
4.D.Bienstock,E.F.Brickell,andC.L.Monma.Onthestructureofminimum-weight-connectedspanningnetworks.SIAMJ.Disc.Math.,3(3):320–329,1990.
5.A.CzumajandA.Lingas.ApolynomialtimeapproximationschemeforEuclideanminimumcost-connectivity.Proc.25thICALP,pp.682–694,1998.
6.A.CzumajandA.Lingas.Onapproximabilityoftheminimum-cost-connectedspanningsubgraphproblem.Proc.10thACM-SIAMSODA,pp.281–290,1999.7.G.N.FredericksonandJ.J´aJ´a.OntherelationshipbetweenthebiconnectivityaugmentationandTravelingSalesmanProblem.Theoret.Comput.Sci.,19(2):1–201,1982.
8.M.R.GareyandD.S.Johnson.ComputersandIntractability:AGuidetotheTheoryof
-completeness.Freeman,NewYork,NY,1979.
9.M.Gr¨otschel,C.L.Monma,andM.Stoer.Computationalresultswithacuttingplanealgo-rithmfordesigningcommunicationnetworkswithlow-connectivityconstraints.OperationsResearch,40(2):309–330,1992.10.M.Gr¨otschel,C.L.Monma,andM.Stoer.Designofsurvivablenetworks.Handbooksin
OperationsResearchandManagementScience,volume7:NetworkModels,ch.10,pp.617–672.North-Holland,Amsterdam,1995.
11.E.N.GilbertandH.O.Pollak.Steinerminimaltrees.SIAMJ.Appl.Math.,16(1):1–29,
1968.
12.M.X.GoemansandD.P.Williamson.Theprimal-dualmethodforapproximationalgorithms
anditsapplicationtonetworkdesignproblems.Chapter4in[15],pp.144–191.
13.J.Gudmundsson,C.Levcopoulos,andG.Narasimhan.Improvedgreedyalgorithmsforcon-structingsparsegeometricspanners.ToappearinProc.7thSWAT,2000.
14.D.F.HsuandX-D.Hu.Onshorttwo-connectedSteinernetworkswithEuclideandistance.
Networks,32(2):133–140,1998.
15.D.S.Hochbaum,editor.ApproximationAlgorithmsfor-HardProblems.PWSPublish-ingCompany,Boston,MA,1996.
16.F.K.Hwang,D.S.Richards,andP.Winter.TheSteinerTreeProblem.North-Holland,Am-sterdam,1992.
17.S.Khuller.Approximationalgorithmsforfindinghighlyconnectedsubgraphs.Chapter6in
[15],pp.236–265.
18.D.Krznaric,C.Levcopoulos,G.Narasimhan,B.J.Nilsson,andM.Smid.Theminimum
2-connectedsubgraphofasetofpoints.Manuscript,September15,1997.
19.J.S.B.Mitchell.Guillotinesubdivisionsapproximatepolygonalsubdivisions:Asimple
polynomial-timeapproximationschemeforgeometricTSP,-MST,andrelatedproblems.SIAMJ.Comput.,28(4):1298–1309,1999.
20.S.B.RaoandW.D.Smith.Approximatinggeometricalgraphsvia“spanners”and
“banyans.”Proc.30thACMSTOC,pp.540–550,1998.Afullversionappearedin[21].21.S.B.RaoandW.D.Smith.Improvedapproximationschemesforgeometricalgraphsvia
“spanners”and“banyans.”May1998.Anextendedabstractappearedin[20].
22.M.Stoer.DesignofSurvivableNetworks,volume1531ofLectureNotesinMathematics.
Springer-Verlag,Berlin,1992.
23.K.Steiglitz,P.Weiner,andD.J.Kleitman.Thedesignofminimumcostsurvivablenetworks.
IEEETrans.CircuitTheor.,16:455–460,1969.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务