1002 lJu 11 1v3607010/hp-tnau:qviXraOntheDynamicalInvariantsandtheGeometricPhasesforaGeneralSpinSysteminaChangingMagneticField
AliMostafazadeh∗
DepartmentofMathematics,Ko¸cUniversity,RumelifeneriYolu,80910Sariyer,Istanbul,Turkey
Abstract
WeconsideraclassofgeneralspinHamiltoniansoftheformHs(t)=H0(t)+H′(t)whereH0(t)andH′(t)describethedipoleinteractionofthespinswithanarbitrarytime-dependentmagneticfieldandtheinternalinteractionofthespins,respectively.WeshowthatifH′(t)isrotationallyinvariant,thenHs(t)admitsthesamedynamicalinvariantasH0(t).Adirectapplicationofthisobservationisastraightforwardred-erivationoftheresultsofYanetal[Phys.Lett.A251(1999)2and259(1999)207]ontheHeisenbergspinsysteminachangingmagneticfield.
1Introduction
InRef.[1],theauthorsconstructadynamicalinvariant[2]fortheHeisenbergspinsysteminachangingmagneticfield.1Thisinvariantinvolvestwoauxiliaryfunctionsthatsatisfyasystemofcoupledfirstorderdifferentialequations.Thesesamedifferentialequationsariseintheconstructionofadynamicalinvariantforthedipoleinteractionofasinglespininachangingmagneticfield.ThisobservationtogetherwiththemorerecentresultsofRef.[4]onthecharacterizationofthequantumsystemsadmittingthesamedynamicalinvariantarethemainmotivationforthepresentstudy.
TheHamiltonianHHeisenbergfortheHeisenbergspinsysteminachangingmagneticfieldB
(t)isaspecialcaseofthespinHamiltoniansoftheformHs(t)=H0(t)+H′(t),
(1)
whereH0(t)isthedipoleinteractionHamiltoniangivenby
(t)·H0(t):=B
Ni=1
i=S
N3i=1α=1
Bα(t)Siα,
(2)
i=(S1,S2,S3)isthespinoperatorforthei-thparticle,Nisthenumberofparticles,andSiiiH′(t)istheHamiltoniancorrespondingtotheinternalspininteractionofthesystem.ForHHeisenberg(t),H′(t)isatime-independentHamiltoniangivenby
′
HHeisenberg
=−AH1,:=
H1:=
1α2Qαi1i2
δα1,α2ifi1andi2labelparticlesthatarenearestneighbors0
otherwise,
α1α2α1α2
QiSi1Si2,1,i2
(3)(4)
i1,i2α1,α2
whereAisaconstantandδa,bdenotestheKroneckerdeltafunction.
ThepurposeofthisarticleistoshowthatanyHamiltonianoftheform(1)admitsadynamicalinvariantthatisalsoadynamicalinvariantofthedipoleHamiltonian(2)providedthatH′(t)hasrotationalinvariance.
First,werecallthatbydefinitionadynamicalinvariantI(t)foraHamiltonianH(t)isa(nontrivial)solutionoftheLiouville-von-Neumannequation:
d
theevolutionoperatorUi(t)generatedbyH(t)satisfiesUi(t)=Wi(t)Zi(t)whereZi(t)isaunitaryoperatorcommutingwithSi3,[4].TheseresultscanbedirectlyemployedfortheHamiltonianH0(t)ofEq.(2).Specifically,thisHamiltonianadmitstheinvariant
NNNN†††(t)·i=W0(t)I(t)=Ii(t)=RSS3W0(t)=U0(t)S3U0(t)=U0(t)I(0)U0,
i
i
i=1
i=1
i=1
i=1
(7)
whereW0(t)=
N
i=1Wi(t)andU0(t)=
N
i=1
Ui(t)and
Ni=1
I(0)=
Si3.
(8)
NotethatbecauseSiαwithdifferentvaluesoficommute,[Wi(t),Wj(t)]=[Ui(t),Uj(t)]=0.i,andU0(t)=eiM(t)whereρFurthermore,wehaveUi(t)=eiMi(t),Mi(t):=ρ(t)·S(t)are
(t)andM(t):=ρdeterminedintermsofR(t)·Ni=1Si.invariant,i.e.,forallα∈{1,2,3},
[H(t),
Then
[H0(t),H′(t)]=0,[I(t),H′(t)]=0.
(10)(11)
′
Ni=1
Now,consideraspinHamiltonianoftheform(1)andsupposethatH′(t)isrotationally
Siα]=0.
(9)
InviewofEqs.(1)and(11)andthefactthatI(t)isadynamicalinvariantforH0(t),wehave
d
Aswementionedearlier,theHeisenbergspinHamiltonianHHeisenbergconsideredinRefs.[1,
′
3]isaspecialcaseofHs(t).ItcanalsobeeasilycheckedthatHHeisenbergisrotationallyin-
variant.HenceHHeisenbergalsoadmitstheinvariantI(t)ofEq.(7).TheinvariantconstructedinRef.[1]differsfromtheinvariant(7)byaconstanttermthatcommuteswiththeHamil-tonian.Therefore,thistermdropsfrombothsidesofthedefiningequation(5).Theonlyeffectofthisadditionaltermistochangethedegeneracyoftheeigenvaluesoftheinvariant.Infact,themostgeneraldynamicalinvariantfortheHamiltonianHs(t)(andinparticularforHHeisenberg)isgivenby
††
Is(t)=Us(t)I(0)Us(t)=U0(t)U′(t)I(0)U′(t)U0(t),
†
whereI(0)isaconstantHermitianoperator.Theinvariant(7)correspondstothechoice(8)forI(0).TheinvariantconstructedinRef.[1]correspondstothechoice
I(0)=
Ni=1
Si3+H1.
(13)
AsmentionedinRef.[1],theeigenvectorsoftheinvariantcorrespondingto(13)arenotknown.Thismeansthatanexplicitsolutionofthetime-dependentSchr¨odingerequationusingthisinvariantisnotpossible.Unlikethisinvarianttheeigenvectorsoftheinvariant(7)areeasilycalculated;theyare(tensor)productsoftheeigenvectorsofIi(t),i.e.,Wi(t)|niwhere|niaretheeigenvectorsofSi3witheigenvalueni=±1/2.Wewishtoconcludethisarticlewiththefollowingremarks.
1.Becauseitisthedynamicalinvariantsthatdeterminethegeometricphases[7,6],thegeometricphasesobtainedfortheHamiltonianHs(t)coincidewiththoseofthedipoleHamiltonianH0(t).ThisisthereasonwhytheexpressionobtainedinRef.[1]forthegeometricphasesofaHeisenbergspinsysteminachangingmagneticfieldisessentiallythesameastheoneforthegeometricphasesofasinglespininthesamemagneticfield.
2.WecanconstructmoregeneralinternalinteractionHamiltoniansH′(t)thatarerota-tionallyinvariantandthusthecorrespondingtotalHamiltonianHs(t)admitsthesame
4
dynamicalinvariantasH0(t).Forexample,wecanset
H(t)=Hn:=
′
n
λn(t)Hn,
3
α1···α2nα1α2n
QiS···S,···iii12n12n
(14)(15)
i1,···,i2n=1α1,···,α2n=1
α1···α2n
wherentakespositiveintegervalues,λnarereal-valuedfunctionsoft,andQi
1···i2n
N
arerealcouplingconstantssatisfyingcertainsymmetryconditions.Inordertostatetheseconditions,weintroducethefollowingabbreviatednotation
˜µ,ν:=Qα1···αj···αk···α2n
Qi1···ij···ik···i2nijik
withαj=µ,αk=ν.
Thentheabovementionedconditionstaketheform
forij=ik:forij=ik:
˜µν=Q˜νµ,Qijikijik
βννβµββµ˜˜˜˜δµ,γQijik+Qikij+δν,γQijik+Qikij−γννγµγγµ˜˜˜˜δµ,βQijik+Qikij−δν,βQijik+Qikij=0.
(16)
(17)
Theserelationsmustbesatisfiedforallpossiblevaluesofthelabelsj,k,ij,ik,β,γ,µ,andν.TheyfollowfromtherequirementthatH1commuteswiththetotalspinoper-α
atorsNi=1Siandtheidentities
SiαSiβ
=
1
2
3γ=1
ǫαβγSiγ,
ββα
SiαSj=SjSi
fori=j.
ItisnotdifficulttogeneralizetheconditionsobtainedforH1toHn.
1α2
Perhapsthesimplestnontrivialexamplethatfulfilsconditions(16)and(17)isQαi1i2
ofEq.(4).
Acknowledgment
IwouldliketothankProfessorAldenMeadforhismostinvaluablecommentsandsugges-tions.
5
References
[1]F.Yan,L.Yang,andB.Li,Phys.Lett.A259,207-211(1999).[2]H.R.LewisJr.andW.B.Riesenfeld,J.Math.Phys.10,1458(1969).[3]F.Yan,L.Yang,andB.Li,Phys.Lett.A251,2-293(1999).
[4]A.Mostafazadeh,‘Geometricphases,symmetriesofdynamicalinvariants,andexact
solutionoftheSchr¨odingerequation,’quant-ph/0101010.[5]X.-C.Gao,J.-B.Xu,T.-Z.Qian,Phys.Lett.A152,449(1991);
Y.-Z.Lai,J.-Q.Liang,W.M¨uller-Kirsten,andJ.-G.Zhou,J.Phys.A:Math.Gen.29,1773(1996).
[6]A.Mostafazadeh,DynamicalInvariants,AdiabaticApproximation,andtheGeometric
Phase,NovaSciencePubl.,inpress.
[7]A.Mostafazadeh,J.Phys.A:Math.Gen.31,9975(1998)and32,8157(1999).
6