您好,欢迎来到99网。
搜索
您的当前位置:首页PC902资料

PC902资料

来源:99网
PC902PC902sFeatures1. Capable of forming an integration circuit in conjunction with an external capacitor2. AC input3. High sensitivity (IFHL:MAX. 2mA)4. High isolation voltage between input and output (V iso : 5 000Vrms)5. Standard dual-in-line package6. Recognized by UL, file No. E380AC Input Type OPICPhotocouplersOutline Dimensions(Unit:mm)Internal connectiondiagram0.01µF10kΩ(ExternalC)5876Voltage regulator Amp12340.85±0.3871.2±0.36 PC902 56.5±0.51234Primarys side mark (Sunken place)sApplications1. Programmable controllers2. Telephone sets3. AC line monitors9.22±0.53.5±0.50.5TYP.7.62±0.33.0±0.5θ=0˚to 13˚0.5±0.12.54±0.25θ0.26±0.1θ1234NCVIN1VIN2NC5678VAUX GNDVOVCC* “OPIC”( Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal- processing circuit integrated onto a single chip.sAbsolute Maximum RatingsParameterForward current*1Peak forward currentPower dissipationSupply voltageOutput voltageOutput currentPower dissipationTotal power dissipation*2Isolation voltageOperating temperatureStorage temperature*3Soldering temperatureSymbolIFIFMPVCCVOIOPOPtotVisoToprTstgTsol(Ta=25˚C)Rating±20±1301515161501705 000-25 to+85-55 to+125260UnitmAAmWVVmAmWmWVrms˚C˚C˚CInputOutput*1 Pulse width<=100µs, Duty ratio:0.001*2 40 to 60%RH, AC for 1 minute*3 For 10 seconds“In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”PC902sElectro-optical CharacteristicsParameterInputForward voltageTerminal capacitanceOperating supply voltageLow level output voltageHigh level output voltageLow level supply currentHigh level supply currentAUX source currentAUX sink currentAUX terminal voltage 1AUX terminal voltage 2“High→Low” thresholdAUX voltage“Low→High” thresholdAUX voltage“High→Low” thresholdinput current 1“High→Low” thresholdinput current 2Isolation resistanceFloating capacitanceResponsetimeTransfercharac-teristics“High→Low”propagation delay time“Low→High”propagation delay timeFall timeRise timeSymbolVFCtVCCVOLVOHICCLICCHIAUX1IAUX2VAUX1VAUX2VAUXHLVAUXLHIFHL1IFHL2RISOCftPHLtPLHtftrCMHCML(Ta=0 to+70˚C unless otherwise specified)ConditionsIF= ±20mAIF= ±0.1mAVF=0, f=1kHzIOL=8.0mA, VCC=5V, IF= ±2mAVCC=5V, IF=0IF= ±2mA, VCC=5VVCC=5V, IF=0Ta=25˚C, IF= ±2mA, VCC=5V, VAUX=1.3VTa=25˚C, IF=0, VCC=5V, VAUX=1.3VTa=25˚C, IF=0, VCC=5VTa=25˚C, IF= ±2mA, VCC=5VTa=25˚C, IF=0, VCC=5VTa=25˚C, IF=0, VCC=5VTa=25˚C, VCC=5V, RL=680ΩVCC=5V, RL=680ΩTa=25˚C, VCC=5V, RL=680ΩVCC=5V, RL=680ΩTa=25˚C, DC500V, 40 to 60%RHTa=25˚C, V=0, f=1MHzTa=25˚CIF= ±2mA, VCC=5VCAUX=0.01µFRL=680ΩTa=25˚C, IF=0, VCM=600V (peak)VO(MIN.)=2V, RL=680Ω, CAUX=0.01µFTa=25˚C, IF= ±2mA, VCM=600V (peak)VO(MAX.)=0.8V, RL=680Ω, CAUX=0.01µFOutputMIN.-0.55-4.5-3.5---21.0-2.32.050.75-0.1--0.15x1010-4.56.5----TYP.-0.9530-0.1-1.71.5-31.5----0.7--0.7-10110.67.010.50.050.12 000-2 000MAX.1.5-250150.4-4.03.5-52.50.22.82.551.101.52.0-1.5-2.0-510150.50.5--UnitVVpFVVVmAmAµAµAVVVVmAmAmAmAΩpFmsmsµsµsV/µsV/µs*4*5Instantaneous commonmode rejection voltage“Output:High level”*5PInstantaneous commonmode rejection voltage“Output:Low level”PC902g4 Test Circuit for Response TimeVoltage regulator2VIN47Ω3tr=tf=0.01µsZO=50ΩAmp.810kΩ755V680ΩVO0.1µF0.01µF6VINT50%TTTtPLH50%tPHLVOtPHLtPLHVOH90%1.5V10%VOL(Note) T>=50mstftrg5 Test Circuit for Instantaneous Common Mode Rejection VoltageVoltage regulatorSwitch for infrared lightemitting diodeIF2BA3Amp.810kΩ755V680ΩVO0.01µF6+-VCM600VCMHWhen the switch for infrared lightemitting diode sets to A, 5VVO(MIN.)=2.0VWhen the switch for infrared lightemitting diode sets to B, GNDVO(MAX.)=0.8VVOLGNDCMLPC902

Fig. 1 Forward Current vs. Ambient Temperature

6050Forward current IF(mA)403020100-25

Power dissipation PO, Ptot(mW)Fig. 2 Power Dissipation vs. Ambient Temperature

200170150

PtotPO100

50

025507585100

0-25

025507585100

Ambient temperature Ta(˚C)Ambient temperature Ta(˚C)

Fig. 3 Forward Current vs. Forward Voltage

500200Forward Current IF(mA)10050201052100.51.01.52.02.53.03.5Ta=75˚CFig. 4 Relative Threshold Input Current vs. Ambient Temperature

1.61.4Relative threshold input current1.21.00.80.60.4-25

VCC=5V

IFHL1=IFHL2=1Ta=25˚C

50˚C25˚C0˚C-25˚C0255075100

Forward voltage VF(V)Ambient temperature Ta(˚C)

Test Circuit For Threshold Input Current vs.Ambient Temperature

Forwardcurrent IF2Voltage regulator810kΩ7Amp.5VV356IFHL1, IFHL2 represents forward current when output goes fromhigh to low. IFHL1 is a forward current flowing into pin2 whileIFHL2 is one flowing out of pin2.

PC902

Fig. 5 Low Level Output Voltage vs. Low Level Output Current

1.00.5VCC=5VTa=25˚CLow level output voltage VOL (V)Fig. 6 Low Level Output Voltage vs. Ambient Temperature

0.2VCC=5VICC=16mALow level output voltage VOL (V)0.150.20.10.18mA5mA0.050.020.01125102050OL (mA)0.051000-250Low level output current I75Ambient temperature Ta (˚C)2550100Fig. 7 Supply Current vs. Supply Voltage3

ICCLSupply current ICC (mA)Ta=-25˚C25˚CICCL1

85˚CICCHICCHFig. 8 AUX Current vs. Forward Current42AUX current IAUX (µA)AUX sink currentVCC=5VVAUX=1.3VTa=25˚CIAUX2ICCL2

0-2-4-6AUX source currentIAUX1AUX source currentIAUX1ICCH00510Supply voltage VCC (V)15-80510-20-15-10-5Forward current IF (mA)1520Fig. 9 AUX Current vs. Ambient Temperature21µA)0AUX sink current IAUX2IF=0mAVCC=5VVAUX=1.3VTest Circuit for AUXForwardcurrentIF2Amp.Voltage regulator810kΩ7IAUX5I6Current flowed from 2 terminal{+ :- :Current flowed out to 2 terminalAUX (5VAUX current I-1-2-3-4-25AUX source current IAUX1IF= ±2mA0255075100Ambient Temperature Ta (˚C)

3PC902

Fig.10 AUX Terminal Voltage vs. Ambient Temperature

4

VCC=5V

AUX terminal voltage VAUX (V)3

VAUX2

IF= ±2mA

2

Fig.10 Threshold AUX Voltage vs. Ambient Temperature

3

VCC=5V

Threshold AUX voltageAUX HL, VAUX LH (V)V2

AUX HL1V

AUX LH

IF=0mA

VAUX1

0-25

0

75(Ambient temperature Ta ˚C)

25

50

100

0

-25

V1

0255075100

Ambient temperature Ta (˚C)

Fig.12 Propagation Delay Time vs. Forward Current

12

PLH (ms)Fig.13 Propagation Delay Time vs. Ambient Temperature

14PLH (ms)tPLH108

tPHL2

tPLHVCC=5V, CAUX=0.01µFRL=680Ω, IF= ±2mAtPLH12108tPHL2-25, tPHLPropagation delay time t0

-20-15-10-5-202510Forward current IF (mA)Ta=25˚CVCC=5VCAUX=0.01µFRL=680Ω1520Propagation delay time ttPHLPHL, t0255075Ambient temperature Ta (˚C)100Test Circuit for Propagation TimePulseGenerator2CRT100ΩFrequencyf<=10HzDuty50%3Amp.Voltage regulator810kΩ756RL680Ω5VCAUX0.01CRT µFsPrecautions for Use

(1) It is recommended that a by-pass capacitor of more than 0.01µF is added between VCC and GND near the device in order to stabilize power supply line.

(2) Handle this product the same as with other integrated circuits against static electricity.(3) As for other general cautions, please refer to the chapter“Precautions for Use”

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务