个人收集整理 仅供参考学习
习题四
4-1 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;
(2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).
题4-1图
解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用文档收集自网络,仅用于个人学习 d2202dt
描述时,其所作的运动就是谐振动.
(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置;第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力.文档收集自网络,仅用于个人学习 (2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O;而小球在运动中的回复力为mgsin,如题4-1图(b)所
SR→0,所以回复力为mg.式中负号,表示回示.题 中所述,S<<R,故
复力的方向始终与角位移的方向相反.即小球在O点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O为圆心的竖直平面内作圆周运动,由牛顿第二定律,
在凹槽切线方向上有文档收集自网络,仅用于个人学习 2令
gR,则有
d2mR2mgdt
d2202dt
4-2 劲度系数为k1和k2的两根弹簧,与质量为m的小球按题4-2图所示的两种方式连
接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.文档收集自网络,仅用于个人学习
题4-2图
解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有倔强系数为
FF1F2,设串联弹簧的等效
K串等效位移为x,则有
Fk串xF1k1x1 F2k2x2 xx1x2
又有
1 / 8
个人收集整理 仅供参考学习
x所以串联弹簧的等效倔强系数为
FFF12k串k1k2
k1k2k1k2
即小球与串联弹簧构成了一个等效倔强系数为kk1k2/(k1k2)的弹簧振子系统,故
k串小球作谐振动.其振动周期为
T22m(k1k2)m2k串k1k2
(2)图(b)中可等效为并联弹簧,同上理,应有FF1F2,即xx1x2,设并联弹簧的倔强系数为
k并,则有
k并xk1x1k2x2故
同上理,其振动周期为
k并k1k2
T2
4-3 如题4-3图所示,物体的质量为m,放在光滑斜面上,斜面与水平面的夹角为,弹簧的倔强系数为k,滑轮的转动惯量为I,半径为R.先把物体托住,使弹簧维持原长,然 后由静止释放,试证明物体作简谐振动,并求振动周期.文档收集自网络,仅用于个人学习 mk1k2
题4-3图
解:分别以物体m和滑轮为对象,其受力如题4-3图(b)所示,以重物在斜面上静平衡时位置为坐标原点,沿斜面向下为x轴正向,则当重物偏离原点的坐标为x时,有文档收集自网络,仅用于个人学习 d2xmgsinT1m2dt ①
T1RT2RI ② d2xR2T2k(x0x)dt ③
式中
x0mgsin/k,为静平衡时弹簧之伸长量,联立以上三式,有
Id2x(mR)2kxRRdt
2kR2mR2I 令
则有
2 / 8
个人收集整理 仅供参考学习
d2x2x02dt
故知该系统是作简谐振动,其振动周期为
mR2ImI/R2T2(2)KkR2
21010kg的小球与轻弹簧组成的系统,按
4-4 质量为
3x0.1cos(82)3(SI)的规
律作谐振动,求:
(1)振动的周期、振幅和初位相及速度与加速度的最大值;
(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)
t25s与t11s两个时刻的位相差;
xAcos(t0),则知:
解:(1)设谐振动的标准方程为
A0.1m,8,T又
21s,02/34
vmA0.8ms12.51ms1 am2A63.2ms2
Fmam0.63N
(2)
12mvm3.16102J2
1EpEkE1.58102J2 E当
EkEp时,有
E2Ep,
12112kx(kA)22即 2
22Am220∴
(3) (t2t1)8(51)32
4-5 一个沿x轴作简谐振动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表示.如果t0时质点的状态分别是:文档收集自网络,仅用于个人学习 x(1)0;
(2)过平衡位置向正向运动;
xAA2处向负向运动; (3)过
Ax2处向正向运动. (4)过
x试求出相应的初位相,并写出振动方程.
解:因为
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有
x0Acos0v0Asin03 / 8
个人收集整理 仅供参考学习
2xAcos(t)T
3232xAcos(t)2T2 23xAcos(t)3T3 5254xAcos(t)4T4
34-6 一质量为1010kg的物体作谐振动,振幅为24cm,周期为4.0s,当t0时位移为24cm.求:
(1)t0.5s时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x12cm处所需的最短时间; (3)在x12cm处物体的总能量.
12A2410m,T4.0s 解:由题已知
∴ 又,t0时,
故振动方程为
20.5Trads1
x0A,00
(1)将t0.5s代入得
x24102cos(0.5t)m x0.524102cos(0.5t)m0.17m
Fmamx10103()20.174.2103N2
2方向指向坐标原点,即沿x轴负向.
0,
(2)由题知,t0时,0A,且v0,故ttt时 23
2t/s323 ∴
x0 (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为
121kAm2A222110103()2(0.24)2227.1104J
4-7 有一轻弹簧,下面悬挂质量为1.0g的物体时,伸长为4.9cm.用这个弹簧和一个质
E量为8.0g的小球构成弹簧振子,将小球由平衡位置向下拉开1.0cm后 ,给予向上的初速度
v05.0cms1,求振动周期和振动表达式.文档收集自网络,仅用于个人学习 4 / 8
个人收集整理 仅供参考学习
解:由题知
m1g1.01039.81k0.2Nmx14.9102
k0.225,即T1.26sm8103
x01.0102m,v05.0102ms-1t0而时,( 设向上为正)
又
2Ax0(v0)2225.01022(1.010)()52102m
2v5.0105tan001,即0x01.010254
5x2102cos(5t)m4∴
4-8 图为两个谐振动的xt曲线,试分别写出其谐振动方程.
题4-8图
3x00,v00,0,又,A10cm,T2s2解:由题4-8图(a),∵t0时,
2rads1T即
3xa0.1cos(t)m2故
A5x0,v00,023 由题4-8图(b)∵t0时,
2
551132 又
56 ∴
55xb0.1cos(t)m63故
4-9 一轻弹簧的倔强系数为k,其下端悬有一质量为M的盘子.现有一质量为m的物体从离盘底h高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动.文档收集自网络,5 / 8
t10时,
x10,v10,12个人收集整理 仅供参考学习
仅用于个人学习 (1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?
(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.文档收集自网络,仅用于个人学习 MMm2k,落下重物后振动周期为k,即增大. 解:(1)空盘的振动周期为
mgx0k.碰撞时,以m,M为一系统(2)按(3)所设坐标原点及计时起点,t0时,则
2动量守恒,即
m2gh(mM)v0
则有
于是
20v0m2ghmM
mg2m22gh2Ax()()()k(mM)v02tan0mg2kh1k(mM)g
v02khx0(Mm)g(第三象限),所以振动方程为
(3)
mg2khk2khx1costarctank(mM)gmM(Mm)g
3m1010kg,当摆球处在平衡位置时,若l1.0m4-10 有一单摆,摆长,摆球质量
41Ft1.010kgms给小球一水平向右的冲量,取打击时刻为计时起点(t0),求
振动的初位相和角振幅,并写出小球的振动方程.文档收集自网络,仅用于个人学习 解:由动量定理,有
Ftmv0
Ft1.0104-1v0.01msm1.0103∴
x00,v00.01ms1xt0按题设计时起点,并设向右为轴正向,则知时,>0
03/2∴
又
g9.83.13rads1l1.0
v0∴
故其角振幅
2Ax0()2v00.013.2103m3.13
小球的振动方程为
A3.2103radl
6 / 8
个人收集整理 仅供参考学习
3.2103cos(3.13t)rad
4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为0.20m,位相与第一振动
32的位相差为6,已知第一振动的振幅为0.173m,求第二个振动的振幅以及第一、第二两
振动的位相差.文档收集自网络,仅用于个人学习
题4-11图
解:由题意可做出旋转矢量图如下. 由图知
2A2A12A22A1Acos30(0.173)2(0.2)220.1730.23/20.01∴ A20.1m
设角AA1O为,则
2A2A12A22A1A2cos 2A12A2A2(0.173)2(0.1)2(0.02)2cos2A1A220.1730.1
即
0
即
4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:
2,这说明,A1与A2间夹角为2,即二振动的位相差为2.
x5cos(3t)cmx5cos(3t)cm113374x25cos(3tx25cos(3t)cm)cm33(1) (2)
7212,33解: (1)∵
∴合振幅AA1A210cm
(2)∵
4,33
∴合振幅A0
4-13 一质点同时参与两个在同一直线上的简谐振动,振动方程为
试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
x0.4cos(2t)m165x20.3cos(2t)m6
解:∵
5()66
7 / 8
个人收集整理 仅供参考学习
∴
A合A1A20.1m
5Asin1A2sin2663tan15A2cos1A2cos230.4cos0.3cos66 6 ∴
0.4sin0.3sin其振动方程为
x0.1cos(2t)m6
*
(作图法略)
4-14 如题4-14图所示,两个相互垂直的谐振动的合振动图形为一椭圆,已知x方向的振
动方程为x6cos2tcm,求y方向的振动方程.文档收集自网络,仅用于个人学习 题4-14图
3解:因合振动是一正椭圆,故知两分振动的位相差为2或2;又,轨道是按顺时针方向
旋转,故知两分振动位相差为2.所以y方向的振动方程为文档收集自网络,仅用于个人学习 y12cos(2t)cm2
8 / 8