wavelength-tunedphase-shiftinginterferometry
PeterdeGroot
Awavelength-tunedFizeauinterferometerisappliedtotheproblemofflatnesstestingoftransparentplates.Whentheplateispositionedataspecificdistancefromthereferencesurfaceandaninteger-math13-framephase-shiftingalgorithmisapplied,thesystemdirectlyfiltersoutunwantedinterferencearisingfrombacksurfacereflections.Theresultingfront-surfaceprofileexhibitslessthan2nmofresidualerrorattributabletospuriousreflectionsfromwithintheplate.©2000OpticalSocietyofAmerica
OCIScodes:120.3180,120.3940,120.5050,120.5060,120.6650,220.4840.
1.Introduction
Acommonprobleminopticalsurfaceprofilingisspu-riousreflections,suchasareencounteredwhentheflatnessofatransparentplateistestedinaFizeauinterferometer.1UnwantedinterferenceeffectsarisingfrombacksurfacereflectionsresultinthecomplexmixtureoffringesshowninFig.1.Theoverlappingpatternsrenderineffectivestandardtechniquesinphase-shiftinginterferometry͑PSI͒,whichrelyontheanalysisofasequenceofinterfer-enceimagesshiftedinphasebymechanicalmodula-tionofthereferenceflat.Commonpracticeistodefeatbacksurfacereflectionsbyoneapplyinganindex-matchingcoatingandthenproceedingwithstandardPSI.Itwouldbedesirabletodispensewithsuchsurfacetreatmentsforroutineinspectionoftransparentplates,particularlyforprocesscontrolinaproductionenvironment.
Severalalternativesarenowavailable,includingwhitelight,2grazingincidence,3desensitizedgratinginterferometry,4useofmultimodelaserdiodes,5andcombinationsofmeasurementsindifferentorienta-tions.6Animportantclassofsolutionsinvolvestunable-wavelengthsources.Okadaetal.,forexam-ple,havemeasuredtransparentplatesinaTwyman–Greeninterferometerbyacquiring60interference
imagesatasequenceofwavelengthsandleast-squaresfittingofthefirst-ordertermstocalculatesurfaceandopticalthicknessprofiles.7,8HereIproposetomeasuretransparentplatesbyusingawavelength-tunedlaserFizeauinterferome-terandaPSIalgorithmthatdirectlysuppressesin-terferencemodulationsthatareattributabletospuriousreflections͑patentpending͒.Theresultingphasemaprepresentsonlythedesiredfront-surfacereflectionandisrelativelyfreeofdistortions,inspiteofthecomplexnatureoftheinterferencepattern.Apartfromuseofawavelength-tunablesourceandtheneedtopositiontheobjectrathercloselytothereferenceflat,thetechniqueinvolvesfewchangestoastandardlaser-basedFizeau.ThePSIalgorithmexecutesquicklyforhigh-throughputproductiontest-ing.Theapproachshouldproveusefultoqualifyopticalcomponents,flatpaneldisplays,andtranspar-entsubstratesforrigiddiskdrives.
2.InterferometryofTransparentPlates
Figure2showstheopticalgeometryleadingtotheinterferencepatternshowninFig.1.Thephasede-layfromthereferencesurfacetothefrontobjectsur-faceis
ϭ2k͑h1Ϫh0͒ϩ2kL,
(1)
P.deGroot͑peterd@zygo.com͒iswiththeDepartmentofRe-searchandDevelopment,ZygoCorporation,21LaurelBrookRoad,Middlefield,Connecticut055-0448.
Received28October1999;revisedmanuscriptreceived16Feb-ruary2000.
0003-6935͞00͞162658-06$15.00͞0©2000OpticalSocietyofAmerica2658
APPLIEDOPTICS͞Vol.39,No.16͞1June2000
whereListhenominaldistancetothefrontobjectsurfaceandtheangularwavenumberkis2dividedbythewavelength.Thephasedelayfromthefronttothebackobjectsurfacesis
ϭ2kn͑h2Ϫh1͒ϩ2knT,
(2)
Fig.1.FringepatterninaFizeauinterferometerwhenviewingatransparentplate.Thecomplicatedinterferenceeffects,includ-ingbacksurfacereflections,defeatconventionalPSIwithmechan-icalphaseshifting.
wherenTisthenominalopticalthicknessofthetransparentplateobject.InEqs.͑1͒and͑2͒,haretheheightprofilesforthereferencefrontobject0,1,2andbackobjectsurfaces,respectively,andr0,1,2arethecorrespondingamplitudereflectivities.
Intheabsenceofthebacksurfacereflection,PSIwouldprovidethephasedifferencegivenbyEq.͑1͒toanarbitraryintegermultipleof2,whichtogetherwithknowledgeofthereferencesurfaceh0andthewavenumberkprovidesarelativesurfaceprofileproportionaltoh1.Inthemoregeneralsituation,theinterferenceintensityis
gϭ͉u͉2,
(3)
where
uϭ
r0ϩrЈexp͑i͒
1ϩrЈr͒,
(4)0exp͑irЈϭr1ϩr2exp͑i͒
1ϩr.
(5)
1r2exp͑i͒
Fig.2.Laser-basedFizeauinterferometerviewingatransparentplate.LD,laserdiode.
Thiscalculationincludesallpossiblemultiplereflec-tionsbetweenthereferencesurfaceandthetwosur-facesofthetransparentplate.Asimplifiedexamplecalculationassumesherethattheintensityreflectiv-ityRisidenticalforallthreesurfaces:
r0ϭϪͱR,
r1ϭͱR,r2ϭϪͱR.
(6)
UsingthissimplifyingassumptionandexpandingEqs.͑3͒–͑5͒,Ifindthatforthisexample
gϭ2R
ͫ3
2
Ϫcos͑͒Ϫcos͑͒ϩcos͑ϩ͒ͬϩO͑R2͒.(7)
Thefirst-ordertermsinRalreadyrevealthediffi-cultyofperformingPSIontransparentplates.Termsinvolvingthephaseintroduceanunwanteddependenceoftheinterferencedataontheheightprofileh2ofthebacksurfaceofthetransparentplate.StandardPSI,whichreliesonamechanicalmodula-tionof,isunabletomakesenseoftheresultinginterferencebehavior.
3.Wavelength-TunedPhase-ShiftingInterferometry
Controlledwavelengthtuning—forexample,byinjec-tioncurrentmodulationofalaserdiodeinanunequal-pathinterferometer—isaconvenientnon-mechanicalmeansofgeneratingphaseshiftsforPSI.9,10Wavelength-tunedPSIhasafurtheradvan-tageindealingwithoverlappinginterferencepat-ternsfrommultiplereflections.Asthewavenumberrampswithtimeataratedk͞dt,theinter-ferenceintensityvariesaccordingtog͑t͒ϭ2R
ͫ3
2
Ϫcos͑ϩ1t͒Ϫcos͑ϩ2t͒ϩcos͑ϩϩ3t͒ͬϩO͑R2͒,
(8)
where
1ϭ2Ldk͞dt,(9)2ϭ⌫1,(10)3ϭ͑⌫ϩ1͒1,(11)⌫ϭnT͞L.
(12)
WavelengthtuningmodulatesthevarioustermsinEq.͑8͒atdifferentrates,thereforeprovidingameansinprincipleofonedistinguishingbetweentheircon-tributionstothefinalinterferenceimage.
Table1summarizesthemodulationfrequencies1...3and4...9forfirst-andsecond-ordertermsofEq.͑8͒,respectively.Forexample,⌫ϭ3mightin-volveaTϭ12-mm-thicktransparentglassplateofindexnϭ1.5placedatadistanceLϭ6mmfromthereferencesurface.Theresultinginterferencemod-1June2000͞Vol.39,No.16͞APPLIEDOPTICS
2659
Table1.ModulationFrequenciesResultingfromWavelengthTuninga
FizeauInterferometerwithaTransparentPlateObjectaModulationFrequencyAmplitudeFrequency
2Ldk͞dt⌫ϭ3⌫ϭ0.52R͑1Ϫ4R͒
1111Ϫ12⌫30.5Ϫ13⌫ϩ141.514222ϪR5⌫Ϫ12Ϫ0.5ϪR6⌫ϩ252.52R72⌫61ϪR82⌫ϩ1722R92⌫ϩ2
8
3
ϪR
a⌫ϭnT͞L.
ulationsincludethefundamentalfrequencyfront-surfacereflection,plusthespuriousharmonics1forthe2...9listedinTable1andshowngraphicallyinFigs.3and4.AlthoughtheseunwantedmodulationsconfuseconventionalPSI,itshouldbepossibleinprincipletoidentifyandsuppressthesetermsaccord-ingtotheirmodulationfrequency.
4.FourierFilteringwithPhase-ShiftingAlgorithms
Phase-shiftingalgorithmsareessentiallysingle-frequencyFouriertransformstunedtotheexpectedinterferencemodulationfrequency1.Conse-quently,allPSIalgorithmshave,tosomedegree,theabilitytosuppresssignaldistortionsatotherfre-quencies.11Ithereforeproposetoconstructaneffi-cientinteger-mathPSIagorithmthatisspecificallydesignedtoextractthedesiredfront-surfaceinterfer-enceinformationwhiledirectlyfilteringouttheun-wantedmodulationfrequenciesallPSIalgorithmsareappropriate2...9.
Nottothistask,sothefirststepistoidentifyanalgorithmhavingthe
Fig.3.Single-pixelintensitymodulationinaFizeauinterferom-eterduringacontinuousshiftinsourcewavelength.Thesolidcurverepresentstheexpectedsignalfromasingleobjectsurface.Thedottedcurverepresentsthesignalwhenviewingatransparentplateobject,includingunwanteddistortionsresultingfromspuri-ousbacksurfacereflections.2660
APPLIEDOPTICS͞Vol.39,No.16͞1June2000
Fig.4.Frequencycontentofthedotted-curvesignalshowninFig.3.Thedesiredfundamentalfrequency1,herenormalizedto1,isaccompaniedbyseveralparasiticmodulationsasnotedinTable1.
desiredfilteringcharacteristics.MostPSIalgo-rithmscanbewrittenasfollows:
MϪ1ϭtan
Ϫ1
ͩM͚Ϫ1
smgm
m
gm
(13)
mϭ0
Ͳm͚cϭ0
ͪϩconst,
wheretheindexmcorrespondstosuccessivecameraframesandsmandcmarecoefficientsspecifictothePSIalgorithm.ThetotalnumberofframesMistypicallybetween4and7.Theinterferencephaseshiftscontinuouslybetweencameraframesbyanamount
⌬␣ϭ1⌬t,
(14)
where⌬tisthetimelapsebetweenframes.PSIalgorithmsaredesignedtobesensitivetothisphaseshiftandtoberesistanttodistortionsinthephaseshiftaswellasotherdisturbances.
OnewaytoevaluatethesensitivityofPSIalgo-rithmstounwantedinterferencetermsistoperformadiscreteFouriertransformofthecoefficientssmandcm:
M͚Ϫ1
S͑͒ϭ
s
m
exp͑Ϫim⌬␣͞1͒,(15)mϭ0
M͚Ϫ1
C͑͒ϭ
c
m
exp͑Ϫim⌬␣͞1͒.
(16)
mϭ0
TheresultingfilterfunctionsS͑͒andC͑͒aretrans-ferfunctionsinthefrequencydomain.12Ameasureofthecharacteristicsensitivityofthealgorithmtointensitynoiseistherefore
I͑͒ϭ͓͉S͉͑͒2ϩ͉C͉͑͒2͔1͞2.
(17)
Perhapsthebestwaytoillustrateuseofthefilterfunctionanalysisistogiveanexampleofwhatwillnotworkinthepresentapplication.Themostcom-monlyusedPSIalgorithmtodayistheSchwider–
Fig.5.Theoreticalfrequencyresponseofthefive-frame,⌬␣ϭ͞2PSIalgorithm,includingtheaveragingorintegratingbucketeffectofthephasechangeduringthedata-acquisitiontimeinterval⌬t.Unfortunatelythisalgorithmissensitivetotheunwantedharmon-icsshowninFig.4.
Hariharanfive-framealgorithm,1,13forwhichthecoefficientsare
sϭ͑020Ϫ20͒,
(18)cϭ͑Ϫ1
02
0Ϫ1͒.
(19)
Thefilterfunctionsare
S͑͒ϭisin͑͞21͒,(20)C͑͒ϭsin2͑͞21͒.
(21)
Thealgorithmhasperiodicextremaat͞5...,meaningthatitissensitivetomodulations1ϭ1,at3,thesefrequencies.Figure5showsthissensitivitygraphicallybyuseofEqs.͑17͒,͑20͒,and͑21͒.Forthe⌫ϭ3exampleinTable1,theoverlapsthe͞2modulationunfilteredbythe1five-frameϭ3sensitivityPSIalgorithm.andisthereforeTheam-plitudeofthisunwantedthefundamentalandisfatal2modulationisthesameastoPSIforthisvalueof⌫Fig.,as6.isclearTherefromdoesthenotϮ20-nmappearcyclictobeerrorsavalueplottedof⌫thatinwouldmakeitpossibletoplacethefirst-order2andand3frequenciessimultaneouslyatthezerosofEqs.͑20͒͑21͒.
APSIalgorithmthatisbettersuitedtothetaskoffilteringunwantedinterferencemodulationsintransparentplatesisthefollowing13-frame,⌬␣ϭ͞4algorithm14,15:sϭ͑Ϫ3
Ϫ4012
21
16
0Ϫ16Ϫ21
Ϫ1204
3͒,
(22)
cϭ͑0
Ϫ4Ϫ12Ϫ12
0
16
24
16
0
Ϫ12Ϫ12Ϫ40͒.
(23)
ThefilterfunctionsinFig.7showthatthe13-framealgorithmsuppressesboththefirst-orderharmonics2,3forthe⌫ϭ3exampleinTable1,aswellasmostofthesecond-orderterms.Theresidualerrorthatis
Fig.6.Theoreticalcyclicerrorasafunctionofthefundamentalphaseforafive-framePSIalgorithminthepresenceofreflec-tions.
attributabletotheThusthe13-framePSI8͞algorithm1ϭ7modulationcombinediswithϮ2nm.thetransparentplatebeingplacedclosetothereferencesurfacenearlyeliminatestheeffectofbacksurfacereflections.
Thereareseveralothersystemconfigurationsandalgorithmsthatusethesameprinciple.Aninter-estingalternativeisthecaseinwhich⌫ϭ0.5.Thetwofirst-orderunwantedmodulationsaccordingtoTable1arenowatsensitivitycurvein2Fig.͞1ϭ80.5showsandhow3͞1theϭ1.5.followingThe15-frame,⌬␣ϭ͞2algorithmsuppressestheseun-wantedmodulations:
sϭ͑Ϫ1
0
90Ϫ21
029
0
Ϫ290210Ϫ901͒,(24)
cϭ͑0
Ϫ4015
0Ϫ26
0
300
Ϫ260150Ϫ40͒.
(25)
Thesecond-ordernm.The7and⌫ϭ9termsresultinaresidualerrorofϮ20.5casepositionsthepart
Fig.7.Theoreticalfrequencyresponseofthe13-frame,⌬␣ϭ͞4PSIalgorithm.Thisalgorithmsuppressesthehigh-frequencymodulationsshowninFigs.3and5.
1June2000͞Vol.39,No.16͞APPLIEDOPTICS
2661
Fig.8.Theoreticalfrequencyresponseofthe15-frame,⌬␣ϭ͞2PSIalgorithm.Thisalgorithmiseffectiveatsuppressingspuri-ousmodulationsforthecaseinwhich⌫ϭ0.5͑seeTable1͒.NotethechangeinhorizontalscalewithrespecttoFigs.6and7.
atamorecomfortabledistancethanthe⌫ϭ3exam-ple,i.e.,sixtimesfurtheraway.Therelativeadvan-tageofthe⌫ϭ3solutionisthatittoleratesalargevariationinobjectposition,anditactuallyworkswellwithvaluesof⌫rangingfrom2to5.The⌫ϭ0.5solutionrequirestheobjecttobepositionedattheprecisedistanceLtowithinafewpercent,andlike-wiseitrequiresamoreprecisecalibrationofthewavelengthexcursion.
5.Experiment
Thetechniquewasevaluatedfortheinspectionof10-cm-thick,0.6-m-diametertransparentflatsgeneratedbylargerotationalpolishingmachines.TheobjectplacementdistanceisLϭ5cmfor⌫ϭ3.Figure1showsasingleframeoftheinterferenceintensitydataforthisobject.Thelarge-apertureinterferometerusesawavelength-tunablelaserdiodesource.16Figure9showstheresultsofafirstexperiment
Fig.9.Experimentaldataprocessedwiththefive-frame,⌬␣ϭ͞2PSIalgorithmshowingthepredicted40-nmpeak-to-valleyprofiledistortionresultingfrombacksurfacereflectionsfromatransparentplate.2662
APPLIEDOPTICS͞Vol.39,No.16͞1June2000
Fig.10.Experimentaldatashowingthesuppressionofprofiledistortionswhenwavelength-tunedinterferometryisusedwiththe13-frame,⌬␣ϭ͞4PSIalgorithmdescribedinthetext.ThetransparentplateobjectisidenticaltotheoneprofiledinFig.9.
withaconventionalfive-framePSIanalysis,forwhichthehigh-frequencyprofiledistortionsareat-tributabletothebacksurfacereflection.Figure10showstheresultsofasecondexperiment,inwhichthe13-framePSIalgorithmtogetherwithwave-lengthtuningeliminatesthedistortion.Forthislat-terexperiment,theangularwave-numberexcursion⌬kpercameraframeaisnominal0.079cmϪ1.Thetotalwave-lengthexcursionforwavelengthof0.68able,misconsistent0.0075nm.withThetheresidualpredictederrorimprovement.
isundetect-6.Conclusions
TheforegoingexperimentaldemonstrationverifiesonepossiblecombinationofpartplacementwithaPSIalgorithmthatsuppressesunwantedmodula-tionsintheinterferenceintensity.Therearemanyotherpossiblecombinationsthatrelyonthesameprinciple.Thekeyistomatchthemodulationfre-quenciesdeterminedbyexpansionofEqs.͑3͒–͑5͒withthePSIalgorithmsensitivitydeterminedbyEq.͑a17new͒.InPSImanyalgorithmcases,bythisusewillofrequireanyoneconstructionoftheknownoftechniques.17,18Oncethisisaccomplished,itispos-sibletoprofileaccuratelytransparentplateswithlaser-basedFizeauinterferometry.
ThisresearchwasinitiatedbyT.ConnollyandwascompletedwiththeableassistanceofJ.Soobitsky,whoperformedtheexperimentswiththeZygo24-in.phase-shiftinginterferometer.
ReferencesandNotes
1.J.Schwider,R.Burow,K.-E.Elssner,J.Grzanna,R.Spola-czyk,andK.Merkel,“Digitalwavefrontmeasuringinter-ferometry:somesystematicerrorsources,”Appl.Opt.22,3421–3432͑1983͒.
2.K.Freischlad,“Largeflatpanelprofiler,”inFlatness,Rough-ness,andDiscreteDefectCharacterizationforComputerDisks,Wafers,andFlatPanelDisplays,J.C.Stover;ed.Proc.SPIE2862,163–171͑1996͒.
3.P.G.DewaandA.W.Kulawiec,“Grazingincidenceinter-
ferometryformeasuringtransparentplane-parallelplates,”U.S.patent5,923,425͑13July1999͒.
4.
P.deGroot,“Gratinginterferometerformetrologyoftranspar-entflats,”inOpticalFabricationandTesting,Vol.6of1996OSATechnicalDigestSeries͑OpticalSocietyofAmerica,Washington,D.C.,1996͒,pp.28–30.
5.
C.Ai,“Multimode-laserinterferometricapparatusforelimina-tionbackgroundinterferencefringesfromthin-platemeasure-ments,”U.S.patent5,452,088͑19September1995͒.
6.
P.deGroot,“Metrologyoftransparentflats,”inOpticalFab-ricationandTestingWorkshop,Vol.13of1994OSATechnicalDigestSeries͑OpticalSocietyofAmerica,Washington,D.C.,1994͒,pp.160–168.
7.
K.OkadaandJ.Tsujiuchi,“Wavelengthscanninginterferom-etryforthemeasurementofbothsurfaceshapesandrefractiveindexinhomogeneity,”inLaserInterferometry:QuantitativeAnalysisofInterferograms,R.J.Pryputniewicz,ed.,Proc.SPIE1162,395–401͑19͒.
8.
K.Okada,H.Sakuta,T.Ose,andJ.Tsujiuchi,“Separatemea-surementsofsurfaceshapesandrefractiveindexinhomogene-ityofanopticalelementusingtunable-sourcephaseshiftinginterferometry,”Appl.Opt.29,3280–3285͑1990͒.
9.G.E.Sommargren,“Interferometricwavefrontmeasurement,”U.S.patent4,594,003͑10June1986͒.
10.
P.S.Fairman,B.K.Ward,B.F.Oreb,andD.I.Farrant,
“300-mmaperturephaseshiftingFizeauinterferometer,”Opt.Eng.38,1371–1380͑1999͒.
11.
K.G.LarkinandB.F.Oreb,“Designandassessmentofsym-metricalphase-shiftingalgorithms,”J.Opt.Soc.Am.A9,1740–1748͑1992͒.
12.
K.FreischladandC.L.Koliopoulos,“Fourierdescriptionofdigitalphase-measuringinterferometry,”J.Opt.Soc.Am.A7,542–551͑1990͒.
13.
P.Hariharan,B.F.Oreb,andT.Eiju,“Digitalphase-shiftinginterferometry:asimpleerror-compensatingphasecalcula-tionalgorithm,”Appl.Opt.26,2504–2506͑1987͒.
14.
P.deGroot,“Phaseshiftinginterferometerandmethodforsurfacetopographymeasurement,”U.S.patent5,473,434͑5December1995͒.
15.
Thehigh-resolutionphase-shiftingmodeintheZygoCorpora-tionMetroProPSIsoftwareemploysthe13-framealgorithmgivenbyEqs.͑22͒and͑23͒.
16.
L.L.Deck,“Phase-shiftingviawavelengthtuninginverylargeapertureinterferometers,”inOpticalManufacturingandTest-ingIII,H.P.Stahl,ed.,Proc.SPIE3782,432–442͑1999͒.17.
P.deGroot,“Derivationofalgorithmsforphase-shiftinginter-ferometryusingtheconceptofadata-samplingwindow,”Appl.Opt.34,4723–4730͑1995͒.
18.
Y.Surrel,“Designofalgorithmsforphasemeasurementsbytheuseofphasestepping,”Appl.Opt.35,51–60͑1996͒.
1June2000͞Vol.39,No.16͞APPLIEDOPTICS2663
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务