您好,欢迎来到99网。
搜索
您的当前位置:首页高一数学二年末知识点归纳

高一数学二年末知识点归纳

来源:99网
高一数学二年末知识点归纳

查字典数学网为大伙儿整理了高一数学必修二期末知识点归纳,供大伙儿参考和学习,期望对大伙儿的学习和成绩的提高有所关心。

一、集合有关概念 1.集合的含义

2.集合的中元素的三个特性: (1)元素的确定性, (2)元素的互异性, (3)元素的无序性,

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N

正整数集N*或N+整数集Z有理数集Q实数集R 1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类:

(1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的差不多关系 1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A

②真子集:假如A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

③假如A?B,B?C,那么A?C ④假如A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集 三、集合的运算 运算类型交集并集补集

定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作,即 CSA=

韦恩图示性质AA=A AΦ=Φ AB=BA ABA ABB AA=A AΦ=A AB=BA ABA

ABB (CuA)(CuB) =Cu(AB) (CuA)(CuB) =Cu(AB) A(CuA)=U A(CuA)=Φ. 例题:

1.下列四组对象,能构成集合的是()

A某班所有高个子的学生B闻名的艺术家C一切专门大的书D倒数等于它自身的实数

2.集合{a,b,c}的真子集共有个

3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是. 4.设集合A=,B=,若AB,则的取值范畴是

5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,

两种实验都做错得有4人,则这两种实验都做对的有人。 6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=. 7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,假如按照某个确定的对应关系f,使关于集合A中的任意一个数x,在集合B中都有唯独确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范畴A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的要紧依据是:

(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)假如函数是由一些差不多函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不能够等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判定方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

(见课本21页相关例2) 2.值域:先考虑其定义域 (1)观看法 (2)配方法 (3)代换法

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

(2)画法 A、描点法: B、图象变换法 常用变换方法有三种 1)平移变换 2)伸缩变换 3)对称变换 4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间 (3)区间的数轴表示. 5.映射

一样地,设A、B是两个非空的集合,假如按某一个确定的对应法则f,使关于集合A中的任意一个元素x,在集合B中都有唯独确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作f:A→B

6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情形.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数

假如y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

二.函数的性质

1.函数的单调性(局部性质) (1)增函数

设函数y=f(x)的定义域为I,假如关于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

假如关于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在那个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:函数的单调性是函数的局部性质; (2)图象的特点

假如函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法 (A)定义法:

○1任取x1,x2∈D,且x1

○2作差f(x1)-f(x2);

○3变形(通常是因式分解和配方); ○4定号(即判定差f(x1)-f(x2)的正负);

○5下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性紧密相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性(整体性质) (1)偶函数

一样地,关于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一样地,关于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特点

偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判定函数奇偶性的步骤:

○1第一确定函数的定义域,并判定其是否关于原点对称; ○2确定f(-x)与f(x)的关系;

○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定. 9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的要紧方法有: 1)凑配法 2)待定系数法 3)换元法 4)消参法

10.函数最大(小)值(定义见课本p36页)

○1利用二次函数的性质(配方法)求函数的最大(小)值 ○2利用图象求函数的最大(小)值

○3利用函数单调性的判定函数的最大(小)值:

假如函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

假如函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

例题:

1.求下列函数的定义域:

2.设函数的定义域为,则函数的定义域为__ 3.若函数的定义域为,则函数的定义域是 4.函数,若,则=

6.已知函数,求函数,的解析式 7.已知函数满足,则=。

8.设是R上的奇函数,且当时,,则当时= 在R上的解析式为 9.求下列函数的单调区间: ⑴(2)

10.判定函数的单调性并证明你的结论.

宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。事实上“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者

则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,专门是汉代以后,关于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。事实上“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,专门是汉代以后,关于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。11.设函数判定它的奇偶性同时求证:.

“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初显现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。事实上《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意差不多一致。看了上文为大伙儿整理的高一数学必修二期末知识点归纳是不是感受轻松了许多呢?一起与同学们分享吧.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务