您好,欢迎来到99网。
搜索
您的当前位置:首页初二数学难题30道

初二数学难题30道

来源:99网
1已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.

A D 求证:△PBC是正三角形.(初二)

P C B

2已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的

延长线交MN于E、F.

F 求证:∠DEN=∠F. E

N C

D

A B

M 3、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.

D 求证:点P到边AB的距离等于AB的一半.(初二) G C E

P

A B Q 4、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F. 求证:CE=CF.(初二)

D A

F E

B C

5、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F. 求证:AE=AF.(初二)

A D F

B C F

E

6、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE. 求证:PA=PF.(初二) A D

B P C 7、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5. 求:∠APB的度数.(初二)

A P B 8、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.(初二) A

P

B C 9、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值. A E C D 10、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a正方形的边长.

A P D 1.如图1,已知△ABC,∠ACB=90°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,BE=EC,若∠ADB=∠BEC=2∠ABC,连接DE交AB于点F,试探究线段DF与EF的数量关系,并加以证明。

B C 3:如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形. (1) 当AB≠AC时,证明四边形ADFE为平行四边形;

(2) 当AB = AC时,顺次连结A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.

A E

D

F

4:如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF 。 (1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明。

(2)判断四边形ABDF是怎样的四边形,并说明理由。 (3)若AB=6,BD=2DC,求四边形ABEF的面积。

B

C

5:如图,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,D∥BC交AC于点F. (1)点D是△ABC的________心; (2)求证:四边形DECF为菱形.

6:在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.

(1) 当点P在线段ED上时(如图1),求证:BE=PD+

33PQ;

(2)若 BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与 x的函数关系式(不要求写出自变量x的取值范围);

(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线

段PG的长。

解:

7:如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的

E点上,BG=10.

(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积. (2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长.

AFBEHDAFBEDG图(1)

CGACFH(A)E(B)DB图(2)

GC

8:如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、

C不重合),点E在射线BC上,且PE=PB.

(1)求证:①PE=PD ; ②PE⊥PD; (2)设AP=x, △PBE的面积为y.

A P D

B ① 求出y关于x的函数关系式,并写出x的取值范围; ② 当x取何值时,y取得最大值,并求出这个最大值

E

C 9:如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线

的位置关系:

(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;

②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.

(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka, CG=kb (ab,k0),第(1)题①中得到的结论哪些成立,哪些不成立?

若成立,以图5为例简要说明理由.

(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=,求BE2DG2的值.

10.如图,在□ABCD中,EF∥BD,分别交BC、CD于点P、Q,分别交AB、AD的延长线于点E、F.已知BE=BP. 求证:(1)∠E=∠F.

(2)□ABCD是菱形.

11.如图10,分别以△ABC的边AB,AC向外作等边三角形ABD和等边三角形ACE,

线段BE与CD相交于点O,连结DOA. (1)求证:BE = DC;

A(2)求∠BOD的度数; E(3)求证:OA平分∠DOE.

O

B12图10

C12.如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边

BC于点F

,连接BE,DF.

(1)求证:ADPEPB; (2)求CBE的度数; (3)当

AP的值等于多少时,△PFD∽△BFP?并说明理由 AB13.某天然气供应站根据实际情况,每天从零点开始至凌晨4点,只打开进气阀,在以后 的16小时(4:00—20:00),同时打开进气阀和供气阀, 20:00—24:00只打开供气阀.已知气站每小时的进气量和供气量是一定的,图11反映了气站某天的储气量y (米)与x(小时)之间的关系.

(1)①0:00—4:00之间气站每小时增加的储气量为________米,

②4:00—20:00之间气站每小时增加的储气(2)求20:00—24:00时,y与x的函数关系式,图象.

14、已知:如图,RtABC中,ACB=90136120y(米3)33量为________米; 并画出函数

3,20O48121620AC=BC,将

24x(小时)图11 直角三角板中45角的顶点放在点C处.并将三角板绕点C旋转,三角板的两边分别交AB边于D、E两点(点D在点E的左侧,并且点D不与点A重合,点E不与点B重合),设AD=m,DE=x,BE=n. (1)判断以m、x、n为三边长组成的三角形的形状,并说明理由; (2)当三角板旋转时,找出AD、DE、BE三条线段中始终最长的线段,并说明理由. 15、 直角三角形纸片

ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边,分别交与点E、点F.

探究:如果折叠后的△CDF与BDE均为等腰三角形,那么纸片中∠B的度数是多少?写出你的计算过程,并画出符合条件的折叠后的...图形。 解:

16、已知如图,△ABC中,AB=AC,∠A=120°,DE垂直平分仙于D,交BC于E点.求证:CE=2BE.

17、已知:如图,△ABC中,AB=AC,∠BAC=90°,若CD⊥BD于D点,

且BD交AC于E点,问当BD满足什么条件时CD=BE?并证明你的判断.

18、如图,在直角坐标系xOy中,直线y=kx+b交x轴正半轴于A(-1,0),交y轴正半轴于B,C是x轴负半轴上一点,且CA=积为6。

(1)求C点的坐标。 (2)求直线AB的解析式。

(3)D是第二象限内一动点,且OD⊥BD,直线BE垂直射线CD于额,OF⊥CD交直线BE 于F .当线段OD,BD的长度发生改变时,∠BDF的

大小是否发生改变?若改变,请说明理由;若不变,请证明并求出其值。

y B 123CO,△ABC的面4 19、某

y C A O x 研究性学习小组在探究

C D O F E x 矩形的折纸问题时,将一块直角三

角板的直角顶点绕着矩形ABCD(AB<BC)的对角线交点O旋转(如图①→②→③),图中M、N分别为直角三角板的直角边与矩

形ABCD的边CD、BC的交点. A

B O N C D A D M O B N C A D O B N C → →

(1)该学习小组中一名成员意外地发现:在图①(三角板的一直角边与OD重合)中,BN=CD+CN;在图③(三角板的一直角边与OC重合)中,CN2=BN2+CD2.请你对这名成员在图①和图③中发现的结论选择其一说明理由. ....

(2)试探究图②中BN、CN、CM、DM这四条线段之间的关系,写出你的结论,并说明理由.

20、已知如图,射线CB∥OA,∠C=∠OAB=100,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF. (1)求∠EOB的度数;

(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值;

(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由;

CEFB图①

222

图② 图③

OA

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务