首先,我们在听课时需要利用,现在很多同学在逻辑推理中存在两大误区:一是想当然地用一些事实和命题,这些事实和命题毫无依据;二是依据是有的,但处理的时候不是等价转化,比如说逆命题的使用,弱化或强化条件等,这两大误区直接导致在数学的学习评价中达不到预期的效果,那我们平时怎样走出这些误区呢?;如果在某区间上f’(x)0成立吗?如果不成立,举一些反例,今天这节课的结论对于我们求函数的单调区间有怎样的帮助?利用导数如何求函数的单调区间呢?我们自己的逻辑推理中就应该弄清这些问题串,如果每节课都能自己进行类似的逻辑推理,那么将会使得我们的逻辑推理变得很强,而且每一步的推理很严密,每个知识点都推理得很严谨,那么我们就可以走出误区――滥用没有理论依据的公理、定理、公式等。
其次,我们在课后做作业时,也就是应用知识的环节,这一环节我们也要用逻辑推理,在做练习时,解决一道题可能有很多逻辑上的想法,在读完题后,我们一般有一个最基本的认识,脑子里会浮现出一些初步的解题设想,这时可能会出现若干思路,我们以解析几何中的两道题为例:
例题的解答告诉我们,在解题过程中,我们每遇到一道题,会有我们初步的设想,可能有多种想法,此时就需要我们逻辑分析出较优的解题策略,此时运算上的逻辑思维可以帮助我们筛选出较优的解题策略,比如说,例1刚刚用第一种思路,计算时会有点繁琐,耗时间,假如我们一开始就选了这种方法,那么就需要我们进行逻辑推理,是不是需要换种思路呢?思路2、思略3充分利用P,Q关于原点对称,所以需要我们尝试,从运算的逻辑推理中选择较优的解法,另外,无论解法1还是解法2、解法3,求得点M后,点N只要改换下标就可以了,这种借助逻辑推理,下标对称的思想,能够有效地简化我们的运算,这种简化在解析几何和导数等章节都很常用,当然在我们运算的时候还会遇到很多需要我们逻辑推理的地方,比如:ab=ac,此时a是否能约?若能约,需要说明非零;若不能约,就需要分类讨论,如果不去细作讨论,很可能会出现解不出正确答案的情况。
?和还是积?和还是差?积还是商?重还是漏?元素是相同的还是不同的?元素是可重复的还是不可重复的?有序还是无序?插空法中元素相邻还是不相邻的?平均分配还是不平均分配?分组还是分配到不同对象?隔板法和插空法的使用注意点有哪些?
关键词:能力;逻辑推理能力;定量思维;提炼数学模型;数学解的分析
数学是一门重要的基础课,在大学理、工、文经的许多课程内容都直接或间接地涉及到数学知识。提到数学教学,人们往往把眼光盯在数学概念、公式等数学知识和计算能力方面,其实这是不够的或者是片面的。实际上,数学能力的培养是数学教学的一项重要任务,这也正是现代化社会发展所迫切需要的。正确迅速的运算能力,逻辑思维能力,空间想象能力是学生必须具备的数学能力。本文主要谈谈学生逻辑思维能力的培养。
逻辑思维能力是学生数学能力的一个重要内容,这是由数学的极度抽象性决定的。逻辑思维能力的培养,主要通过学习数学知识本身得到,而且这是最重要的途径,在数学教学中,学生的逻辑思维能力主要表现为:判断能力;逻辑推理能力;定量思维、提炼数学模型的能力和对数学解的分析能力。
一、判断能力
判断是对客观事物情况有所断定的思维。数学判断则主要是对事物的空间形状及数量关系有所肯定或否定的思维,具体说是对命题的判断。恰当的判断能力即指能正确地、恰如其分地反映事物的真实情况。提高判断能力主要是提高分析能力和理解能力。。对于复杂的命题,必须运用分析与综合相结合的方法,一面分析一面综合,分析与综合互相结合推导,就能比较迅速地找出证题与解题的途径。要保证证题或解题的正确性,还必须遵守逻辑思维规律,即同一律、无矛盾律、排中律和充足理由律。这四条规律反映了人们思维的根本特点:确定性、无矛盾性、一贯性和充分根据性。如果违背了其中任何一条规则,都可能导出证明或解题的错误。所以掌握逻辑思维的规则是具有判断能力的一个重要因素。辩证思维是具有判断能力的又一个重要因素。特别在高等数学中,对一些数学概念的辩证关系的掌握尤为重要。如无限与有限、连续与间断等。掌握了这种辩证思维的方法,就能提高判断一个命题是否正确的能力。判断是贯穿于科学理论数学化的全过程之中的,判断力是解决数学问题的基础能力。。
二、逻辑推理能力
数学中严谨的推理和一丝不苟的计算,使得每一数学结论不可动摇。这种思想方法不仅培养了数学家,也有助于提高全民族的科学文化素质,它是人类巨大的精神财富。逻辑推理主要有演绎和归纳法。数学按其本性是一门演绎科学。因为在它由现实世界的空间形式和数量关系提炼出概念之后,在一定阶段上就要发展成为有相对性的体系,即要用独特的符合语言从初始概念和公理出发进行逻辑推理,以此来建立和证明自己的定理、结论,这实际就是用演绎法建立的体系。演绎法中最有代表性的是公理法,以此法建立起来的数学体系就是公理化体系,象欧氏几何、群论、概率论、数理逻辑等都属此类。实践证明,公理化体系对于培养人们逻辑推理能力是非常有力的。公理方法是在公元前三世纪由希腊数学家欧几里得首创的。他的巨著《几何原本》就是从少数的几个定义和公理出发,推导出整个几何的一个严密的几何学体系。爱因斯坦关于欧氏几何曾说:“世界第一次目睹了一个逻辑体系的奇迹,这个逻辑体系如此精密地一步一步推进,以致它每一个命题都是绝对不容置疑的--我这里说的是欧几里得几何”。推理的这种可赞叹的胜利,使人类的理智获得了为取得以后成就所必需的信心。19年德国数学家希尔伯特又出版了《几何基础》,在这本书中他设计的几何公理法获得成功。。而且这种逻辑推理条理清楚,简明扼要,可以保证数学中结论的充分确定性,也是判定数学命题真伪的有效方法。所以公理方法不但对于建立科学理论体系,系统传授科学知识以及推广科学理论的应用等方面有至关重要的作用,而且对于培养人们的逻辑推理能力也是一个极有效的方法,在数学的教学中应给以极大的重视。归纳推理是逻辑推理中又一种非常主要的推理方法。归纳法通常就是从观察和实验开始的,例如数学中的猜想:费尔玛猜想、哥德猜想等等,都是通过具体的数先引出“猜想”,然后通过更多的具体的数增强这个“猜想”,从而归纳出猜想,这里用了不完全归纳法,但是猜想还不是定理,还需经过数学理论的严格说明。就连公理化体系的建立,也是先收集了相当丰富的资料之后,人们需要对这些材料加以概括和整理,只有在这时,人们才能在许许多多的命题中经过分析和综合,经过比较和选择来确定一些命题作为公理,其余命题就作为以公理为依据的逻辑推理的结果。猜想和公理都是对感性材料进行比较、分析、综合、抽象概括等一系列逻辑加工之后归纳出来的,然后再用演绎法去证明。归纳推理能力的培养是一种综合的逻辑思维能力的培养。类比推理也是数学中常用的一种逻辑推理方法。
类比推理是根据两个对象有一部分属性相类似,推出这两个对象的其他属性相类似的一种推理方法。在初等数学、高等教学、集合论中都要用到类比推理。
三、定量思维、提炼数学模型的能力
定量思维是指人们从实际中提炼数学问题,抽象化为数学模型,用数学计算求出此模型的解或近似解,然后回到现实中进行检验,必要时修改模型使之更切合实际,最后编制解题的软件,以便得到更广泛的方便应用。数学模型就是用数学式子表示假定。它是用来揭示客观自然界的本质、规律及解决现实世界中各种问题的最重要的方式。应用数学理论和方法来解决实际问题,本质上就是把这个问题概念化和公式化,即提出数学模型。模型提炼得正确,就等于这个问题解决一大半。提炼数学模型的能力,是数学水平高低的重要标志之一。任何的现象都是复杂的,所以一般说来一个数学模型的建立不可能一次完成。对于一个现象,首先应该进行分析,努力抓住事物现象的特征,然后选择与现象的本质有关的、对于结果有重要影响的因素,建立起一个简单的数学模型,并将这个模型的解与现象进行比较,并考虑进其他的因素,进行多次反复的修正,以逐步逼近现象,达到提炼出该现象的完整的、正确的数学模型。同一个现象,由于研究的角度和见解的不同可表示为不同的数学模型。提炼数学模型的能力是在大量地研究、解决问题的过程中不断培养的。
四、对数学解的分析能力
【关键词】形式证明 命题 逻辑推理 序列
【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2014)04-0141-02
在初中阶段的数学学习过程中,几何知识是许多学生都倍感头痛的问题,尤其是几何证明。这是一个较为普遍的现象,其成因颇多,既有主观因素也不乏客观因素。不少同学在听老师讲课时基本能懂能接受,但要其证明时就出现了这样那样的问题,不是不会写证明过程,就是说不清理由;不是东扯西拉,就是前后衔接不上……还有就是想当然者——“我觉得就是这样的”;更有甚者,将举例说明和证明混为一谈,真可谓是“百花齐放”,诸如此,林林总总,本文不在此一一列举。
何谓证明?“一个命题的正确性需要经过推理,才能做出判断,这个推理过程叫做证明。”人教版,七年级下册21页,如是说。诚然,这不能说其不对,但也确实不够清楚。什么是“推理过程”?具体问题又该如何“推理”?从课本的这段话中,我们恐怕不易弄清以上问题。许多初学几何的初中生虽能朗朗上口地背诵定理,但却不能真正理解其含义,更谈不上对其的运用。那么,为何初中生都普遍觉得几何难学呢?问题究竟出在哪里?这些问题本文将稍后逐步探讨。
几何学是一门非常古老的学科,早在古希腊时期几何学就已经非常繁荣,比如欧式几何。时至今日,我们所学的初等几何基本上都是建立在经历了两千多年的欧式几何的基础之上的,由此可见其古老性之一斑。虽然几何学由来已久,并经过了数千年的积淀和研究,然而它仍然令一代又一代的学习者为之困惑,缘何?笔者认为,几何学之难(尤其是几何证明)关键在于其形式化的公理、定理、性质以及演绎推理等。所谓形式化,即是用一系列约定的符号(如逻辑符号)来表示概念、符号化命题以及推理,并将一定范围内的所有正确的推理形式(逻辑规律)都汇集在一个整体中。在此基础之上,由几条公理及公设出发,并规定一些初始符号和规则,经过有效的逻辑推理,得出若干新的、正确的、可靠的结论(即命题),这些命题的集合就形成一个公理系统,这就是形式化几何。初中几何主要研究的是平面几何的图形性质及其数量关系,在欧式几何的公理体系和框架下,早已经形成了许多有关平面几何的命题,但是教师在教学的过程中绝不能只告诉学生们一个结果,更多时候教师需要引导他们去探索并发现规律,总结和证明他们发现的规律,要证明就必然要弄清形式化的推理。
下面,本文就从数理逻辑的角度来探讨何谓推理?何谓证明?为此,需要介绍一些有关的数理逻辑概念和符号。
一 命题与逻辑运算符
定义1:具有确定真假性的陈述句称为命题。
凡是命题都有真值,命题的真值只有两种情况,即取自集合{0,1},具体情况是:真命题的真值为1,假命题的真值为0。
定义2:具有唯一确定真值的陈述句称为命题。
要判断一个语句是不是命题,需要注意两点:一是先判断其是否为陈述句;其次是看其真值是否唯一确定,这两个条件缺一不可。例如,“x>5,x∈R”,该语句虽然是陈述句,但却无法判断真假。因为x是可变的,当x取3时,其为假命题;当x取7时,其为真命题。这类语句可称之为命题变元或称之为命题变量,值得注意的是命题变元不是命题,原因是其真值是可变的,时真时假。此外,还要特别注意像“我正在说谎话”这样的陈述句,这个语句无论你假设其真值为“1”还是“0”都会推出矛盾,这样的语句称之为悖论。在数学中比较著名的有“罗素悖论”。
通常命题可分为简单命题和复合命题,简单命题就是不能分解成更简单的陈述句的命题,简单命题也称为原子命题。复合命题就是除简单命题外的命题,复合命题也可以理解为是由逻辑运算符联结简单命题而成的。为了便于后面的讨论,本文约定用小写的英文字母p、q、r…表示命题或命题变元。
比较常用的逻辑运算符有5种:(1)“”称为否定运算符,读为“非”。(2)“”称为合取运算符,读为“且”或“与”。(3)“”称为合取运算符,读为“或”。(4)“”称为蕴含运算符,读为“蕴含”。(5)“”称为等价运算符,读为“等价”。
以上5种逻辑运算有其优先级,规定其优先顺序为:()、、、、、,其中“()”的意思是有()的就先算,然后再按照、、、、的顺序来做运算,对于同一优先级的运算符,先出现者先算。
二 推理和证明
定义3:命题公式递归定义如下:(1)单个的命题常量或命题变量是命题公式;(归纳基)。(2)若A、B是公式,那么A、AB、AB、AB和AB也是命题公式;(归纳步)。(3)所有的命题公式都是有限次使用(1)和(2)得到的符号串;(最小化)。
在这里可以使用大小写英文字母表示命题公式,英文字母还可带下标。以后在没有二义的情况下,将命题公式简称为公式。命题逻辑的推理理论就是利用命题逻辑公式研究什么是有效的推理。
定义4:推理就是从前提集合开始演绎出结论的思维过程,前提集合是一系列已知的命题公式,结论是从前提集合出发应用推理规则推出的命题公式。
若前提是一系列真命题,并且推理中严格遵守推理规则,则推出的结论也是真命题。在命题逻辑中,主要研究推理规则。
定义5:称蕴含式(A1A2…An)B为推理的形式结构,A1,A2,…,An为推理的前提,B为推理的结论。若(A1A2…An)B为永真式,则称从前提A1,A2,…,An推出结论B的推理正确(或说有效),B是A1,A2,…,An的逻辑结论或称有效结论,否则称推理不正确。若从前提A1,A2,…,An推出结论B的推理正确,则记为(A1A2…An)B。
通俗地讲(A1A2…An)B即是说,若A1,A2,…,An都正确,则B也正确。清楚了什么是推理以及推理的结构后,下面来讨论什么是证明。
定义6:证明是一个描述推理过程的命题公式序列A1,A2,…,An,其中的每个命题公式或者是已知的前提,或者是由某些前提应用推理规则得到的结论,满足这样条件的公式序列A1,A2,…,An称为结论An的证明。
在证明中常用的推理规则有3条:(1)前提引入规则:在证明的任何步骤都可以引入已知的前提;(2)结论引入规则:在证明的任何步骤都可以引入这次已经得到的结论作为后续证明的前提;(3)置换规则:在证明的任何步骤上,命题公式中的任何子公式都可用与之等值的公式置换,得到证明的公式序列的另一公式。
以上是一些基本的逻辑推理规则,如何运用这些规则进行推理和证明呢?在定义6中可以看到,证明实质上就是要把已知的命题公式按照一定顺序排列起来,那么具体问题的证明要如何来将那些已知的条件、公理、定理、推论以及性质等(诸如此类在逻辑上都可视为命题公式)按照怎样的顺序来排列呢?下面,通过初中几何中的具体实例进一步体会理解证明的实质。
例如,已知:如图在RtABC中,∠C=90°,AC=BC,AD=DB,AE=CF。
求证:DE=DF。
分析:由ABC是等腰直角三角形可知,∠A=∠B=45°,由D是AB中点,可考虑连接CD,易得CD=AD,∠DCF=45°。从而不难发现DCF≌DAE。
证明:连接CD。
AC=BC;
∠A=∠B。
∠ACB=90°,AD=DB;
CD=BD=AD,∠DCB=∠B
=∠A。
AE=CF,∠A=∠DCB,AD=CD。
DCF≌DAE。
DE=DF。
上述证明的过程,实质上就是一个命题的序列,可以如下来看:(1)等腰三角形ABC两腰相等(AC=BC);(2)等腰三角形ABC两底角相等(∠A=∠B);(3)已知条件(∠ACB=90°,AD=DB);(4)等腰三角形DCB两腰及两底角相等;(5)等量减等量得等量(AE=CF),(4)得出的结论(∠A=∠DCB,AD=CD);(6)三角形全等的判定定理SAS(DCF≌DAE);(7)全等三角形对应边相等(DE=DF)。
这里的(1)(2)(3)(4)(5)(6)(7)不就是一个序列吗?并且序列中的(7)就是要证明的结论,其实所有的证明都是如此,只要按照逻辑的推理规则构造出一个包含证明结论的序列即可。那么,在这七步的序列中运用了哪些推理规则呢?(1)前提引入规则;(2)前提引入规则;(3)前提引入规则;(4)假言推理规则;(5)置换规则和结论引入规则;(6)假言推理规则;(7)假言推理规则。
数学能够非常有效地训练人的逻辑思维能力,它是其他学科无可替代的,而数学证明又是最为有效的途径,正如罗增儒先生所说,数学证明有助于获得新的体验、发现新的结论;有助于增进理解,只有清楚了一个命题的证明,才能真正理解该命题的内容。对于几何证明,首先应该弄清题意,明确证明方向即把握好题目的已知条件和要证明的结论,然后结合图形理清思路,把和本题有关的命题搜索出来,再来思考需要用到哪些定理,将其罗列出来,最后按照逻辑的思维方法把它们构造成一个包含要证明结论的序列,这就完成了证明的过程。
参考文献
[1]人民教育出版社、课程教材研究所等.数学(七年级下册)[M].北京:人民教育出版社,2012
[2]张顺燕.数学的源与流[M].北京:高等教育出版社,2004
[3]耿素云.离散数学[M].北京:清华大学出版社,2008
一、知识结构、逻辑推理及相互间的关系。
在小学数学教学中,构建良好的数学知识结构是培养发展学生逻辑思维能力的一个重要途径。乌辛斯基早就指出:“所谓智力发展不是别的,只是很好组织起来的知识体系。”而知识体系因为其内在的逻辑结构而获得逻辑意义。数学中基本的概念、性质、法则、公式等都是遵循科学的逻辑性构成的。
“数学作为一种演绎系统,它的重要特点是,除了它的基本概念以外,其余一切概念都是通过定义引入的。”这种演绎系统一方面使得数学内容以逻辑意义相关联。另一方面从知识结构所蕴含的逻辑思维形式中得到的研究方法(如逻辑推理等),再去获取更多的知识。如学习“能同时被2、5整除的数的特征”时,我们是通过演绎推理得到的:
所有能被2整除的数的末尾是0、2、4、6、8;
所有能被5整除的数的末尾是0、5;
因此,能同时被2、5整除的数的末尾是0。
数学中的这种推理形式一旦被学生所熟识,他们又会运用它在已有知识的基础上作出新的判断和推理。
。;;三是新旧知识建立联合意义。。推理,是从一个或几个已知的判断得出新的判断的过程。通常有:演绎推理(从一般性的前提推出特殊性结论的推理);归纳推理(从特殊的前提推出一般结论的推理);类比推理(从特殊的前提推出特殊结论的推理或从一般前提推出一般结论的推理)。如:教学“循环小数”时,先在黑板上出示算式1.2÷0.3=4、1÷2=0.5、4.8÷4=1.2、0.666÷2=0.333;1÷3=0.333……、70.7÷33=2.14242……、299÷37=8.081081……等。观察各式的商学生们直观认识到:小数有有限小数、无限小数之分。进而从一组无限小数中,发现了循环小数的本质属性,得到了循环小数的定义。由两个或几个单称判断10.333…的数字3依次不断地重复出现,2.14242…的数字42依次不断重复出现等,得出一个新的全称判断(循环小数的定义)是归纳推理的一种方法。
在教学的过程中,教师结合教学内容,有意识地把逻辑规律引入教学,注意示范、点拨,显然是有利于发展学生的逻辑思维能力。
二、逻辑推理在教与学过程中的应用。
。
“演绎的实质就是认为每一特殊(具体)情况应当看作一般情况的特例”。为了得以关于某一对象的具体知识,先要找出这一对象的类(最近的类概念),再将这一对象的类的属性应用于哪个对象。如:运用乘法分配律简便运算时,学生必须以清晰、稳固的乘法分配律知识为基础,才能得出:
999×999+999=999×(999+1)=999000
这里999×999+999=999×(999+1)是根据一般性判断a×c+b×c=(a+b)×c推出的。当学生理解这种推理的顺序,且懂得要使演绎推理正确,首先要前提正确,并学会使用这样的语言:
只有两个约数(1和它本身)的数是质数;
101只有两个约数;
101是质数。
那么,符合形式逻辑的演绎法则就初步被学生所掌握。
在知识层面中,这种类属过程的多次进行,就导致知识不断产生新的层次,其逻辑结构就越加严密,新的知识也就会不断分化和精确化,就可以逐渐演绎出新的类属性的具体知识。教学中正确把握这种结构,用演绎推理的手段组织学习过程,不但能培养学生的思考方法,理解内容的逻辑结构,还能提高学生的模式辨认能力,缩短推理过程,快速找到解题途径。
。
(1)当新知识从属于旧知识时,新知识只是旧知识的派生物。可以从原有认识结构中直接推衍。新知识可以直接纳入原有的认知结构中。
如学生已学过两位数的笔算,清晰而稳固地掌握了加法的计算法则,现在要学三、四位数的加法,只要让学生思考并回忆两位数加法计算的表象结构,适当地点拨一下三、四位数加法与两位数加法有相同的笔算法则,学生就能顺利解决新课题。新知识很快被旧知识同化,并使原有笔算法则得到充实新的知识获得意义。虽然这些知识的外延得到扩大,但内涵不变。
教学中,掌握这些知识的内涵的逻辑结构,就会有一个清晰的教学思路,就会自觉地运用演绎推理的手段,与学生一起愉快地顺利地进行下位学习。就不会在讲三、四位数加法时,着眼于竭力以三、四位数加法为例证,说明加法的计算法则。
(2)新知识类属于原有较高概括性的观念中,但不能从原有上位观念中直接派生出来,而需要对原有知识作部分的改组,才能同化新知识。新知识纳入原有知识后,原有知识得到扩展、加深、、修饰和精确化。新旧知识之间处于相关类属。这时,运用演绎推理之前,先要对原有知识作部分改组,请出一个“组织者”,再步步演绎。。)
如学生已掌握了长方形面积计算公式:S=ab,现在要学习正方形的面积计算公式,这就要对长方形进行改组,把它的长改成与宽相等(a=b),于是“正方形面积计算”可被“长方形面积计算”同化,当a=b时,S=ab=a·a=a[2,]。又如教圆面积之前,向学生演示或让学生动手操作,把圆适当分割后拼成近似长方形,由长方形面积公式导出圆面积计算公式。其间以直代曲,是由旧知识导向新知识的认知桥梁,是由演绎推理构建新知识时,找到的观念上固定点。找到固定点后圆面积的计算被长方形面积同化,于是面积计算规则从直线封闭图形的计算,推广到曲线封闭图形的计算,扩展加深了对原有面积计算规则的认识内容,使有关面积计算的认识结构趋向精确化。
。当需要研究某一对象集时,先要研究各个对象(情况),从中找出整个对象集所具有的性质,这就是归纳推理。归纳推理的基础是观察和试验,是从具体的、特殊的情况过渡到一般情况(结论、推论)。
教材中关于概念的形成,运算法则和运算定律、性质得出,一般是通过归纳推理得到的。如分数的初步认识。在学习前,学生认知结构中已有了分数的某些具体经验,加上教材提供的和教师列举的生活实例和图形。如:一个苹果平均分成两份,每份是它的1/2,一根钢管平均截成三段,每段是它的1/3,一张纸平均分成4份,每份是这张纸的1/4……所有这些操作和演示都让学生认识到几分之一这个概念。随后,再认识几分之几。这种不完全的归纳推理,是在考察了问题的若干个具体特例后,从中找出的规律。(严格地说,由不完全归纳法推理得到的结论还需要论证,才能判定它的正确性。)
运用归纳推理传授知识时,要根据学生的实际经验,选取典型的特例,并能够通过典型特例的推理得出一般性的结论。又要用这个“一般结论”,去解决具体特例。在教与学的进程中,归纳和演绎不是孤立地出现的,它们紧密交织在一起。
3.如果新旧知识间既不产生从属关系,又不能产生上位关系,但是新知识同原有知识有某种吻合关系或类比关系,则新旧知识间可产生并列关系。那么可以运用类比推理。
。如五年级学习“一辆卡车平均每小时行40千米,0.3小时行了多少千米?”时,学生还无法根据小数乘法的意义列出此题的解答等式。所以,教学中一般用整数乘法中的数量关系相类推。
原有的认知结构中,整数乘法与小数乘法只是一般的非特殊的并列结合关系。新知识的学习,只能利用原有知识中的一般的和非特殊的有关内容进行同化。
首先,要树立起立体观念,培养自己的空间想象能力,做到能想象出空间图形并把它画在一个平面上,还要能根据画在平面上的“立体”图形想象出原来空间图形的真实形状。为了培养学生的空间想象能力,刚开始学习立体几何时,要让他们动手做一些实物模型,如直线、平面、正方形、长方形等等。通过对模型中点、直线和平面之间位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力,想象这些空间图形画在纸上是什么模样;同时要掌握画直观图的规则,掌握实线、虚线的使用方法,为正确地画图打好基础。培养自己的画图能力,可从简单的图形如直线和平面的各种位置关系,简单的几何体画起,由对照模型画图逐步过渡到没有模型也能正确画出空间图形的直观图,而且能由直观图想象出空间图形,在这个“想图、画图、识图”的过程中,不仅空间想象能力得到提高,抽象思维能力也可以得到很大提高。
其次,立体几何的研究方法与平面几何的研究方法类似,即依据公理,运用逻辑推理方法,这就要求初学立体几何的学生要重视逻辑推理能力的培养。。由此不难看出,要学好立体几何的基础知识,必须重逻辑推理能力的培养。。同时对基础的题目必须从一开始就认真地书写证明过程,包括已知、求证、证明、作图等,证明过程要特别注意所运用的公理,定理的条件要摆够、摆准。另外,对课本上定理的证明必须熟记,掌握定理证明的逻辑推理过程及其渗透的教学方法。
。比如三垂线定理可以把平面内两条直线垂直转化为空间的两条直线垂直,而三垂线定理的逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。再如异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距、面面距三者之间互相转化。又如异面直线可由平面几何中的平行直线转化而得。只要把两条平行直线中的一条旋转使它与原平行线确定的平面相交即可。异面直线还可由平面几何中的相交直线平移而得。只须把两条相交直线中的一条从原相交直线确定的平面中平行地拉出来,这个过程涉及到一个距离问题。事实上,整个平面几何所研究的点和直线之间的三种位置关系都可以用角和距离描述,当平面图形由于多加了一个“面”而转化为立体图形,出现点、直线、平面之间的六种位置关系时,不难发现,我们仍然可以用角和距离来描述。
由于平面几何是立体几何的一部分,空间的点、线、面都在同一平面内,平面几何中的结论仍然成立。反过来,平面几何中的正确命题在立体几何中是否依然正确呢?当然不一定正确。。
一、在“数与代数”中培养合情推理能力
在“数与代数”的教学中,计算要依据一定的“规则”――公式、法则、推理律等。因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过,又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。再如,初中教材是用温度计经过形象类比和推理引入数学数轴知识的。
教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生合情推理能力。
二、在“空间与图形”中培养合情推理能力
在“空间与图形”的教学中,既要重视演绎推理。又要重视合情推理。中学数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认别图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”并为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中.要不断地观察、比较、分析、推理,才能得到正确的答案。如:在圆的教学中,结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系;等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生对发现的性质进行证明,使直观操作和逻辑推理有机地整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续,这个过程中就发展了学生的合情推理能力。注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。同时也有助于学生空间观念的形成,合情推理的方法为学生的探索提供努力的方向。
三、在“统计与概率”中培养合情推理能力
统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。
概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。
四、在学生熟悉的生活环境中培养合情推理能力
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务