您好,欢迎来到99网。
搜索
您的当前位置:首页最新六年级下册数学思维易错题难题训练及答案含详细答案

最新六年级下册数学思维易错题难题训练及答案含详细答案

来源:99网
最新六年级下册数学思维易错题难题训练及答案含详细答案

一、培优题易错题

1.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100. (

1

(

)

(2)当x取何值时,小红在甲、乙两商场的实际花费相同?

(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少? 【答案】(1)271;0.9x+10;278;0.95x+2.5

(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。

(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150. ∴当小红累计购物超过150元时,在甲商场的实际花费少.

当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样

【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;

(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可; (3)列不等式得出x的范围,可选择商场.

2.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数) 星期 一 二 三 四 五 每股涨跌 +2.4 ﹣0.8 ﹣2.9 +0.5 +2.1 (1)星期四收盘时,每股是多少元?

(2)本周内最高价是每股多少元?最低价每股多少元?

(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手

续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何? 【答案】(1)解: 星期 每股涨跌 实际股价 一 +2.4 37.4 二 ﹣0.8 36.6 三 ﹣2.9 33.7 四 +0.5 34.2 五 +2.1 36.3 星期四收盘时,每股是34.2元

(2)解:本周内最高价是每股37.4元,最低价每股33.7元

(3)解:买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元; 卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元; 卖出交易税=36300×0.1%=36.3元;

收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元

【解析】【分析】(1)根据表中的数据,列式计算,就可求出星期四收盘时每股的价格。 (2)根据表中的数据,先求出每天收盘时的每股的价格,从而就可得出本周内最高价股价和最低股价。

(3)根据题意分别求出买入总金额、买入手续费、卖出总金额、卖出手续费、卖出交易税,再求出收益,就可得出答案。

3.在抗洪抢险中,人民的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米) 14,﹣9,-18,﹣7,13,﹣6,10,﹣5 问:

(1)B地在A地的何位置;

(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油? 【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米 (2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米, ∴82×0.5-29=12升. ∴途中要补油12升

【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.

4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘 数”.如:4=22-02 , 12=42-22 , 20=62-42 , 因此4,12,20这三个数都是神秘数.

(1)28和2012这两个数是神秘数吗?为什么?

(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数

是4的倍数吗?为什么?

(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?

【答案】(1)解:找规律:4=4×1=22-02 , 12=4×3=42-22 , 20=4×5=62-42 , 28=4×7=82-62 , …,2012=4×503=5042-5022 , 所以28和2012都是神秘数

(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数 (3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1) 2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.

【解析】【分析】(1)根据规律得到28=4×7=82-62 , 2012=4×503=5042-5022 , 得到28和2012这两个数是神秘数;

(2)由(2k+2) 2-(2k) 2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;

(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.

5.某手机经销商购进甲,乙两种品牌手机共 100 部.

(1)已知甲种手机每部进价 1500 元,售价 2000 元;乙种手机每部进价 3500 元,售价 4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?

(2)已经购进甲,乙两种手机各一部共用了 5000 元,经销商把甲种手机加价 50%作为标价,乙种手机加价 40%作为标价. 从 A,B 两种中任选一题作答:

A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利 1570 元.求甲,乙两种手机每部的进价.

B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后 10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价. 【答案】(1)解:设购进甲种手机 部,乙种手机 根据题意,得 解得:

部,

元.

答:销商共获利

元.

元,

(2)解:A: 设每部甲种手机的进价为 元,每部乙种手机的进价 根据题意,得

解得:

答:求甲,乙两种手机每部的进价分别为:3000元,2000元. B:乙种手机:

部,甲种手机

元,

部,

设每部甲种手机的进价为 元,每部乙种手机的进价 根据题意,得

解得:

答:求甲,乙两种手机每部的进价分别为:2000元,3000元.

【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。(2)A 根据进价加利润等于甲和乙的售价,列出方程 B 先求出甲乙的部数,表示出甲乙的标价,列出关系式,50部甲×甲的标价+10部甲×甲标价的八折+40部乙×乙的标价=利润率乘以成本,即可解出结果。

6.数轴上有 、 、 三点,分别表示有理数

,动点 从 出发,以每

秒 个单位的速度向右移动,当 点运动到 点时运动停止,设点 移动时间为 秒.

(1)用含 的代数式表示 点对应的数:________;

(2)当 点运动到 点时,点 从 点出发,以每秒 个单位的速度向 点运动, 点到达 点后,再立即以同样的速度返回 点.

①用含 的代数式表示 点在由 到 过程中对应的数:________ ; ②当 t=________ 时,动点 P、 Q到达同一位置(即相遇); ③当PQ=3 时,求 t的值.________ 【答案】(1)(2)2t-58;当

时,t=32 ;当

时,t=

;t=3,29,35,

,

【解析】(1) 点所对应的数为: ( 2 )①

② 点从 运动到 点所花的时间为 秒, 点从 运动到 点所花的时间为 秒 当

时, :

,解之得

时, :

, :

, :

,解之得

16≤t≤39 和39 ≤ t ≤ 46两类分别计算.

【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,

7.甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整数天做完,若按乙、丙、甲的顺序轮流去做,则比计划多用半天;若按丙、甲、乙的顺序轮流去做,则也比原计划多用半天.已知甲单独做完这件工作要 天,且三个人的工作效率各不相同,那么这项工作由甲、乙、丙三人一起做,要用多少天才能完成? 【答案】 解:==

=

(天)

答:要用天才能完成。

【解析】【分析】 首先应确定按每一种顺序去做的时候最后一天由谁来完成。如果按甲、乙、丙的顺序去做,最后一天由丙完成,那么按乙、丙、甲的顺序和丙、甲、乙的顺序去做时用的天数将都与按甲、乙、丙的顺序做用的天数相同,这与题意不符;如果按甲、乙、丙的顺序去做,最后一天由乙完成,那么按乙、丙、甲的顺序去做,最后由甲做了半天来完成,这样有

做,最后由乙做了半天来完成,这样有 么

, 可得

;而按丙、甲、乙的顺序去 , 可得

. 那

, 即甲、乙的工作效率相同,也与题意不合。所以按甲、乙、丙的顺序去

, 可

做,最后一天是由甲完成的。那么有 得

。这样就可以根据工作效率之间的关系分别求出乙和丙的工作效

率,用总工作量除以三队的工作效率和即可求出一起做完成的时间。

8.一项工程,甲独做 天完成,甲 天的工作量,乙要 天完成.两队合做 天后由乙队独做,还要几天才能完成? 【答案】 解:乙的工作效率:

=

=

(天)

答:还要天才能完成。

【解析】【分析】用甲的工作效率乘3再除以4即可求出乙的工作效率,用总工作量减去两队合作2天的工作量即可求出还剩的工作量,还剩的工作量由乙来做,用剩下的工作量除以乙的工作效率即可求出还需要的时间。

9.规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要

小时,而乙、甲轮流做同样的工程只需要

小时,那乙

单独做这个工程需要多少小时?

【答案】 解:1-0.6=0.4(小时),1-0.8=0.2(小时),甲工作2小时相当于乙1小时的工作量,

9.8-5+5÷2=7.3(小时)

答:乙单独做这个工程需要7.3小时。

【解析】【分析】两队交替做工程,两种情况下做到最后剩下的工作量是相同的,两次需要的时间不同,是因为一种情况剩下的工作量是甲做的,另一种情况是剩下的工作量是乙做的,也就是

, 这样求出甲做0.4小时与乙做0.2小时

的工作量相等,这样就可以求出两人工作效率的倍数关系。9.8小时中甲做了5小时,乙做了4.8小时,而甲做的5小时相当于乙2.5小时,所以乙单独做需要4.8+2.5=7.3小时。

10.甲、乙两项工程分别由一、二队来完成.在晴天,一队完成甲工程要12天,二队完成乙工程要15天;在雨天,一队的工作效率要下降 两队同时完成工作,问工作时间内下了多少天雨?

,二队的工作效率要下降

.结果

【答案】 解:原来一队比二队的工作效率高:提高后的工作效率二队比一队高:

=

=

, 则3个晴天5个雨天,两队的工作进度相同,共完成: ,

5÷=10(天)

答:工作时间内下了10天雨。

【解析】【分析】先表示出原来两队的工作效率,然后计算出工作效率下降后两人的工作效率,写出前后工作效率差的比,化简后确定3个晴天和5个雨天的工作进度是相同的,然后计算出3个雨天与5个晴天完成的工作量,再求出下雨的天数即可。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务