CommunicationDelayandInstabilityin
Rate-ControlledNetworks
PriyaRanjan,EyadH.Abed,andRichardJ.La
Abstract—WeanalyzetheoptimizationframeworkforrateallocationproblemproposedbyKellyandcharacterizetheoscillationsintermsofunderlyingmap’speriodtwoorbitintheinstabilityregimewitharbitrarycommunicationdelay.Weshowtheoscillationscanbefairlylargebycom-putingtheboundsexplicitlyforlargereturntriptimes.
I.INTRODUCTION
WiththeunprecedentedgrowthandpopularityoftheInternettheproblemofrate/congestioncontrolisemergingasamorecrucialproblem.Poormanagementofcongestioncanrenderonepartofanetworkinaccessibletotherestandsignificantlydegradetheperformanceofnetworkingapplications.KellyhasproposedanoptimizationframeworkforrateallocationintheInternet[7].Usingtheproposedframeworkhehasshownthatthesystemoptimumisachievedattheequilibriumbetweentheendusersandresources.Basedonthisobservationresearchershaveproposedvariousrate-basedalgorithmsthatsolvethesys-temoptimizationproblemoritsrelaxation[7],[11],[12].How-ever,theconvergenceofthesealgorithmshasbeenestablishedonlyintheabsenceoffeedbackdelay,andtheimpactoffeed-backdelayhasbeenleftopenaswellasanytrade-offthatmayexistbetweenstabilityandselectedutilityandcostfunctions.Inparticulartheissueofstabilityhasnotbeensystematicallyinvestigatedwithlargecommunicationdelays.
Inourearlier[15]wehaveestablishedaglobalstabilitycri-terionforsystemoptimizationprobleminthepresenceofarbi-trarydelayforsimpleoneresourceproblemwithmultipleho-mogeneousflows.Thisstabilityconditionwasderivedusingtheinvariance-basedglobalstabilityresultsfornonlineardelay-differentialequations[13],[5],[4],[3].ThiskindofglobalstabilityresultsaredifferentfromthatbasedonLyapunovorRazumikhintheoremsinthesensethatinourapproachalsopro-videsuswithinsightonthestructureofemergingperiodicor-bits,e.g.,theirperiodicityandamplitude,inthecaseoflossofstability.Thislossofstabilityandcharacterizationofensuingperiodicorbitaremaintopicsofthispaper.
Generallyspeaking,ourresultstellusthatiftheuserandresourcecurveshaveastablemarketequilibrium,thencorre-spondingdynamicalequationforflow-optimizationwillcon-vergetotheoptimalsolutioninthepresenceofarbitraryde-lay.Thisresultessentiallyshowsthatstabilityisrelatedtoutil-ityandpricecurvesinafundamentalway.Inparticular,foragivenpricecurve,itpossibletodesignstableuserutilityfunc-tionssuchthatthecorrespondingdynamicalsystemconvergestotheoptimalflowirrespectiveofcommunicationdelay.Con-versely,iftheunderlyingmarketequilibriumisunstablethenitispossibletofindalargeenoughdelayforwhichtheoptimal
TheauthorsarewiththeDepartmentofElectricalandComputerEngineeringandtheInstituteforSystemsResearch,UniversityofMaryland,CollegePark,MD20742USA.Email:priya@isr.umd.edu.
pointlosesitsstabilityandgiveswaytooscillations.Thispa-perstudiestheoscillatoryorbitsbyexplicitlygivingtheboundsontheiramplitude.Itisalsoshownthattheseboundsarede-rivedfromanunderlyingdiscretetimemapwhichgoesthroughaperioddoublingbifurcationwiththelossofstability.
Theseresultsprovideaninterestingperspectivefordesign-ingenduseralgorithmsandactivequeuemanagement(AQM)mechanisms.Itisalsoworthnotingthatingeneralcharacter-izingtheexactconditionsforstabilitywithadelayisdifficult.Hence,ourresultprovidesasimpleandyetrobustwayofdeal-ingwiththeproblemofwidelyvaryingfeedbackdelayincom-municationnetworksthroughacleverchoiceoftheuserutilityfunctionandpricefunctions.
Thispaperisorganizedasfollows.SectionIIdescribestheoptimizationproblemforratecontrol.Relevantpreviousworkonthestabilitycriterionofasystemgivenbyadelayeddifferen-tialequationisgiveninSectionIII.Ourmainresultsoninstabil-ityarepresentedinSectionIV,whichisfollowedbynumericalexamplesinSectionVI.WeconcludethepaperinSectionVII.
II.BACKGROUND
Inthissectionwebrieflydescribetheratecontrolproblemintheproposedoptimizationframework.Consideraflowtravers-ingasingleresource.Theratecontrolproblemcanbeformu-latedasthefollowingnetutilityoptimizationproblemfromtheenduser’spointofview[7]:
(1)
s.t.
whereistherate,istheutilityoftheuserwhenitreceives
arateof,
isthepriceperunitflowtheuserhastopaywhentherateis,andisthecapacityoftheresource.Theproposedenduseralgorithmintheabsenceofdelayisgivenbythefollowingdifferentialequation[9].
.
Now,supposethatcongestionsignalgeneratedatthesharedre-source,i.e.,
,isreturnedtotheuserafterafixedandcom-monroundtriptime.Inthepresenceofdelaytheinteractionisgivenbythefollowingdelayeddifferentialequation
CDC2003
(4)Afternormalizingtimebyandreplacing
,eq.4
becomes:
(6)
where
(7)
ofgeneralnonlineardifferenceequationwithcontinuousargu-mentgivenby
(8)
whereandinthecontextofeq.6.
Undercertainnaturalinvertibilityconditionson
,itleadstomuchstudiedequation[16].
(9)
where.Forthesolutionofeq.9tobe
continuousfor
,alongwiththecontinuityofand,whichistheinitialfunction,aso-calledconsistencycondition
isrequired[5],[16].
Itturnsoutthatagreatdealabouttheasymptoticstabilityofeq.7canbelearnedfromtheasymptoticbehavioroffollowingdifferenceequation,withdenotingthesetofpositiveinte-gers:
(10)
Someofrelevantpreviousworkontheseequationsispre-sentedinthefollowingsection.
III.PREVIOUSWORK
Inthissectionwesummarizesomeofrelevantworkpresented
in[4].Consideranonlineardelaydifferentialequationofthefollowingform:
(11)
wherefunctionsandarecontinuousfor
withthevaluesin.wemakefollowingadditionalassump-tionsthesefunctions:
1.
isstrictlyincreasing,,and,
2.thereisexactlyonepoint
andin
.
2
isthegloballyattractingfixedpointof
themap,thenforanyinitialfunction
andeverythecorrespondingsolutionofeq.12approaches
where
(13)
Thiskindofmarkingfunctionarisesiftheresourceismodeledasqueuewithaserviceratepacketperunittimeandapacketreceivesamarkwithacongestionindicationsignalifitarrivesatthequeuetofindatleastpacketsinthequeue.Gen-erally,anystrictlyincreasingcontinuousfunctionshouldsufficeforourpurpose.
Theclassofutilityfunctionsweconsiderherehastheform
(14)
Inparticular,hasbeenfoundusefulformodelingthe
utilityfunctionofTransmissionControlProtocol(TCP)algo-rithms[10].Wesaythatauser
withutilityfunctionisgreedierthananotheruserwithutilityfunction.Onecaninterpretthenotionofgreedhereusingthe
if
notionofelasticityofdemand[17].Withtheutilityfunctionsoftheformineq.14onecaneasilyshowthattheelasticityofthedemanddecreaseswithincreasingasfollows.Givenaprice,theoptimalrateoftheuserthatmaximizesthenet
utility
isgivenby(15)
Therefore,onecanseethatpriceelasticityofthedemandde-creaseswith,i.e.,thelargeris,thelessresponsivethede-mandis.
Themodelusedfordesignofend-userratecontrolalgorithmin[8]doesnotexplicitlyaddressthecasewherethetotalde-mandoftheusersexceedsthelinkcapacity.Inpracticetotalrateoftheusersislimitedbythelinkcapacity.Inordertohan-dlethisshortcomingofthemodelwemakefollowingnaturalassumption:
CDC2003Assumption1:Supposethattherearehomoge-neoususers,i.e.,userswiththesamefeedbackdelayandrate.Weassumethattherateofeachuserisboundedfromaboveby
mayexceedthetotalthrough-putmomentarilyleadingtoseverepenaltiesforalltheusers.Thisboundalsomakessenseduetothefactthatnetworkedusershaveatendencytosynchronize[6].
Inthepresenceoftimedelay,
homogeneousenduserswiththeirutilityfunctionineq.14,eachusersratedynamicalequationisgivenby
(16)
Bysubstituting
(17)
where
and
(19)
Wefirstmakethefollowingassumptionsonthefunctionsand.
Assumption2:(i)Thefunction
asgivenineq.18isstrictlydecreasingwithforall.(ii)The
function
isincreasingforall(iii)BothandareLipschitzcontinuousonstrictlypositiverealaxis.Forourresultsinthispapertheexactformofusers’utilityfunctionsortheresourcepricefunctionneedsnotbegivenbyeq.14and13,respectively,butrathermustsatisfyAssump-tion2.Thisallowsusthefollowingchangeofcoordinate:
(20)
3
whereisanunstablefixedpoint
ofmap.Inthefollowingsubsectionwedescribehowtheinstabilityofunderlyingdiscrete-timemapistranslatedtotheinstabilityofdelay-differentequationineq.23.
B.LinearInstability
Assumingthatthemapgivenbyeq.24islocallysmooth,
itispossibletofindconditionsforlinearinstabilityofthefixed
pointofthemap
andthatofconstantfunctionforthedelay-differentialequationineq.23.Inorderfor
CDC2003tobelocallyasymptoticallystableforall,followingvariationalequationshouldhaveitszerosolutionstable.
(because
)
(25)
whereand.Nowtodetermine
thestabilityof
,wecanapplywellknownresults[14].(1)Itisknownthateq.25isstableforall
onlyif:and
(26)
(2)Incasewhenaboveisviolatedwehavepartialstabilityfor
somevaluesoftimedelays:
and
(27)
Forourcaseitfollowsfromeq.25thatisalways
negative,whichholdsduetofactthat
isalwayspositive.Thesecondconditioniscrucialtostabilityofeq.23.
Clearly,forthecasewhen
(perioddoublingconditionforthemap)thelinearstabilityconditiongivenbyeq.26isvi-olatedandforalargeenoughtheconstantsolution
willnotbestable.Thus,weknowthatinunstablesituationso-lutionswillbemorecomplexthanaconstantfunctionandwillstaywithintheintervaltheyinitiallystartfromduetotheinvari-anceresultsgivenbytheorem3.Nextweshowthatincaseofinstabilitytheboundsonthesolutionofdelay-differentialequa-tionwillbegivenbytheperiodtwosolutionofunderlyingdis-cretetimemap.
Theorem5:Let
beaclosedintervalsuchthat.Lettheinitialcondition,
where
,bethesolutionofeq.23.Now,ifandthe
points
andarefixedpointsof,thenforallsufficientlysmallthereexistsafinitesuchthat
forall.
Proof:TheprooffollowsthesameargumentsusedintheproofofTheorem3,whichisgivenin[15],exceptthatboundaryconsideredthistimewillsolutionwillbestrictlydecreasingfromright.untilIntheinterval
.fromAfterwardsabove.fromSimilarinvariancereasoningtheoremfollowsititstaysreachesthepointforlowerboundedbound.
by4
andisindependent
of.Therefore,thestabilityofthesystemdoesnotdependonthenumberofusersinthesystem.Thiscanalsobeexplainedusingthepriceelasticityofdemand.Since,givenautilityfunc-tionoftheformineq.14forsome,thepriceelasticity
ofthedemandisconstantforall
fromeq.15,onewouldexpectthestabilityofthesystemtobeindependentoftheop-eratingpoint,i.e.,thefixedpoint,andcapacity,butonlyonthechoicesoftheutilityandpricefunctionsthatdeterminethere-sponsivenessoftheusersandresource,respectively.
However,inthecaseofinstabilitywhen
,dependingonthefeedbackdelay,itwilloscillate.Clearly,theupperboundonthesolutionisgivenbytheself-imposedlimit
CDC20035
userstoavoidanycapacitymismatch.AccordingtoTheorem5thelowerboundwillbegivenby.Hence,linkwillseeawidefluctuationfromfulltoverylowutilizationirrespectiveofthenumberofusers.
VI.NUMERICALSIMULATIONS
Wetaketwohomogeneoususerswiththeirutilityfunctionsandpricefunctionasinoftheformgivenbyeq.14with
andlinkcapacitytobe5.Itisclearthatforeq.13with
thesevaluesofandratecontrolalgorithmisunstablesince
CDC20036
[9][10][11][12][13][14][15][16][17]F.Kelly,A.Maulloo,andD.Tan.Ratecontrolforcommunicationnet-works:shadowprices,proportionalfairnessandstability.JournaloftheOperationalResearchSociety,49(3):237–252,March1998.
S.KunniyurandR.Srikant.End-to-endcongestioncontrolschemes:Util-ityfunctions,RandomlossesandECNmarks.InProc.ofIEEEINFO-COM,Tel-Aviv,Israel,2000.
S.KunniyurandR.Srikant.Atimescaledecompositionapproachtoadap-tiveecnmarking.InProc.ofIEEEINFOCOM,Anchorage,AK,2001.S.LowandD.Lapsley.Optimizationflowcontrol.IEEE/ACMTransac-tionsonNetworking,7(6):861–874,June1997.
J.Mallet-ParetandR.D.Nussbaum.Globalcontinuationandasymptoticbehaviourforperiodicsolutionsofadifferential-delayequation.AnnalidiMatematicaPuraedApplicata,145(4):33–128,1986.
S.Niculescu,E.I.Verriest,L.Dugard,andJ.Dion.Stabilityandrobuststabilityoftimedelaysystems:Aguidedtour.StabilityandControlofTime-DelaySystem,LNCS:228:16–17,1997.
P.Ranjan,E.H.Abed,andR.J.La.Greed,delayandstabilitytradeoffsinnetworkeconomics.SubmittedtoGlobecom,2003.
ANSharkovsky,Y.L.Maistrenko,andE.Y.Romaneko.DifferenceEqua-tionsandtheirapplications:(Trans.fromRussian).KluwerAcademic,1995.
HalR.Varian.IntermediateMicroeconomics.Norton,NewYork,1996.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务