inSrTiO3
TakatoshiHashimoto1,2∗,TakeshiNishimatsu1,
HiroshiMizuseki1,YoshiyukiKawazoe1,AtsushiSasaki2,andYoshiakiIkeda21
InstituteforMaterialsResearch(IMR),TohokuUniversity,Sendai980-8577,Japan2
NECTOKINCorporation,Sendai982-8510,Japan
February2,2008
Abstract
Valleylinesontotal-energysurfacesforthezone-centerdistortionsoffree-standingandin-planestrainedSrTiO3areinvestigatedwithanewlydevelopedfirst-principlesstructureoptimizationtechnique[Jpn.J.Appl.Phys.43(2004),6785].Theresultsofnumericalcalculationsconfirmedthattheferroelectricityisinduced,andtheCurietemperatureisincreased,byapplyingbiaxialcompres-siveortensilestrains.Alongthedistortion,strongnonlinearcouplingbetweenthesoft-andhard-modesisdemonstrated.
Keywords
densityfunctionaltheory,localdensityapproximation,biaxialstrain,potentialsurface,Slatermode,Lastmode
1Introduction
Perovskitestructurestrontiumtitanate,SrTiO3,isanextremelyimportantma-terial.Becauseofitswiderangeofphysicalproperties,suchassemiconductiv-ity,superconductivity,incipientferroelectricityandcatalyticactivity,SrTiO3isexpectedtobeusedforavarietyoftechnologicalapplications.BulkSrTiO3
crystallizesinthecubiccentrosymmetric(O1
roomtemperature.Atomicfractionalcoordinatesh)structure,andisparaelectricatareSr(0,0,0),Ti(11
1112,2,2,0,2,
∗Corresponding
author.E-mailaddress:hasitaka@imr.edu
1
SrOIzTiOIIyxOIIIFigure1:Cubic(O1
h)crystalstructureofperovskiteoxideSrTiO3.cubictoanantiferrodistortive(AFD)tetragonal(D18
4h)structure,whichisas-sociatedwithzone-boundaryphononcondensationattheRpoint.[3,4,5,6,7]ThistransitionisdrivenbyTiO6octahedralrotationalmodeinstabilities;therotationangleislessthan2◦[8].Atlowertemperatures,thedielectriccon-stantexhibitsCurie-Weisslawlikebehavior,butdoesnotexhibitdivergence.Thedielectricconstantsaturatestoavalueof∼2×104under10K[9,10],butnotransition,e.g.toaferroelectricstate,actuallyoccurswithdecreasingtemperature.Becauseofitsfailuretoexhibitaferroelectricphasetransition,SrTiO3isgenerallyregardedasanincipientferroelectric,inwhichquantumfluctuationssuppressferroelectricity.TheobservedtemperaturedependenceofSrTiO3’sdielectricconstantiswelldescribedbyBarrett’sformula[11],
ε=
M2T1
coth
T1
straininducesferroelectricityinSrTiO3hasnotbeenclarified.WeinvestigatetherelationshipbetweenSrTiO3-ferroelectricityandin-planebiaxialstrains,compressiveandtensile,byanalyzingvalleylinesoftotal-energysurfaceswithabinitiostructureoptimizationtechniquethatwehaddeveloped[16].Com-paredtotheconventionalsoft-mode-onlystructureoptimizationtechnique,ourapproachhastheadvantagesthatitcan:(1)accuratelyestimatetotalenergyasafunctionoftheamplitudeofatomicdisplacements,(2)correctlyinvesti-gatenonlinearcouplingbetweensoft-modeatomicdisplacements,hard-modedisplacements,andlatticedeformations.
Inthenextsection,webrieflyexplainourstructureoptimizationtechniqueandthenumericalmethodsusedinthisstudy.Resultsofcalculationsareshownin§3.In§4,wesummarizethepaper.
2
Method
2.1
structureoptimizationtechnique
Toinvestigatethetotal-energysurfacesofperovskiteoxides,weimproveKing-SmithandVanderbilt’sscheme[17]andredefinetheamplitudeofatomicdis-placementsuαas
uα=
u2x+u2y+u2zunder
theconditionthatvτ
thetotalαandthestraincomponentsηi(i=1,...,6;Voigtnota-tion)minimizeenergyforeachuusinganabinitionorm-conserving
pseudopotentialmethodandgeometricoptimization.TosimulateD1
4hepitaxialSrTiO3thinfilms,asillustratedinFig.2(a),underasubstrateinducedbiaxialin-planestrain,onlythecaxis(i.e.,η3)ispermittedtorelaxbutotherparame-tersa=b,α=β=γ=90◦(i.e.,η1,η2,η4,η5,andη6)arefixedforalldirectionsofpolarizations,[001](Fig.2(b)),[110](Fig.2(c)),and[100](Fig.2(d)),tosat-isfysymmetryconstraints.Totalenergyminimizationundertheconstant-uαconstraint(i.e.,onthespheresurfacewitharadiusuα)isperformediteratively.Fullydetailedformalismofthisstructureoptimizationtechniqueisgiveninref.[16].Wecontinueiterativeoptimizationofatomicandlatticestructureun-tildifferencesintotalenergiesremainlessthan10−7Hartreefortwosuccessiveiterations.
2.2CalculationMethods
Forallabinitiocalculations,weusetheABINITpackage[18]withadaptingitforourstructureoptimizationtechniqueinitssourcecodeofSrc
(a)[001]cab[010][100]Substrate(b)(c)(d)[001][100][010][100]Figure2:(a)ExaggeratedillustrationofepitaxiallygrownSrTiO3onsubstrate.Latticeconstantsa,b(=a),andcandcrystallographicdirections[100],[010],and[001]areindicated.(b)Patternofatomicdisplacementsaccompanying[001]tetragonaldistortionunderbiaxialcompressivestrainisindicatedbyarrowsin(0¯10)projection.(c)Thatof[110]monoclinicdistortionunderbiaxialtensilestrainin(100)projection.(d)Thatof[100]monoclinicdistortionunderbiaxialtensilestrainin(100)projection.
4
ofkineticenergiesofplanewavesjustbelowtheenergycutoffisintroduced[20]asimplementedintheABINIT.This“energycutoffsmearing”techniqueiseffi-cientnotonlyforconstant-pressuremoleculardynamicsbutalsoforcomparingtotalenergiesindifferentvolumes.Withthistechnique,onedoesnothavetoachieveconvergencebetweenconstant-number-of-plane-wavescalculationsandconstant-energy-cutoffcalculationswithrespecttothebasissetand,therefore,doesnothavetoadoptasuperfluouslylargeenergycutoff.Thepseudopoten-tialsincludeO2sand2p,Ti3s,3p,3dand4s,Sr4s,4pand5s,asvalenceelectrons.Blochwavefunctionsaresampledonan8×8×8gridofk-pointsinthefirstBrillouinzone.Theexchange-correlationenergyistreatedwithinthelocaldensityapproximation(LDA).Astheparametrizedcorrelationenergy,weuseTeter’srationalpolynomialparameterization,[21]whichreproducestheresultsobtainedbyCeperleyandAlder.[22]Theelectronicstatesarecalculatedbytheiterativeschemetoreachatoleranceofconvergencethatrequiresdifferencesofforcestobelessthan5×10−7Hartree/Bohrfortwosuccessiveiterations.
Withthesecalculationmethods,thecalculatedequilibriumlatticeconstantforcubicSrTiO3is7.27Bohr,whichis∼1.3%lessthantheexperimentalvalueof7.36Bohrobtainedbylinearlyextrapolatingthelatticeconstantathightemperaturetozerotemperature(seeFig.1inref.[23]).Thisunderestima-tioniscommonlyconsideredtobearesultoferrorsfromLDA.Propertiesofferroelectrics,especiallytotal-energysurfaces,areverysensitivetothelatticeconstant[24].Semi-empiricalconstraintsonlatticeconstantsincalculationsofperovskiteoxideshavebeencommonlyusedtoacquireagreementsbetweentheexperimentallyobservedvaluesandcalculatedresults.Althoughartificialconstraintscanbeintroducedinourstructureoptimizationtechnique,wedonotemploysuchsemi-empiricalconstraints.Nevertheless,webelievethatcal-culationsusingLDAclarifysometrendsofdisplacivetransitionsinstrainedSrTiO3.
TheBerry-phasemethod[25,26]isusedtoevaluatespontaneouspolariza-tions.
ForsimplicityandtoemphasizetheoriginofferroelectricityinstrainedSrTiO3,weneglecttheAFDinstabilitiesanduseasingleunitcelltocalcu-latetotal-energysurfaces.WebelievethatthisisareasonableapproximationbecausetheeffectofAFDondielectricresponseisnegligiblysmall.[27]
3
3.1
ResultsandDiscussion
Free-standingSrTiO3
Beforeexaminingin-plainstrainedSrTiO3,weevaluatedthetotal-energysur-faceoffree-standingSrTiO3thatisdistortedfromcubictotetragonalandhas[001]polarization.ShowninFig.3(a)isthetotalenergyasafunctionoftheamplitudeofatomicdisplacementsuz.M.Itohetal.foundthatferroelectricitywasinducedinSrTiO3bytheisotopeexchangeof18Ofor16O.[10]ThisisotopeexchangeexperimentandtheincipientferroelectricitywithT0=38K>0inBarrett’sformulasuggestthatthetotalenergyvsuzcurvemighthavedoublewellstructure,butourcalculatedresultdoesnot.ThisisnotjustanartifactofthesensitivityofLDAtotal-energysurfacestolatticeconstants,asdescriedinrefs.[24]and[28],rater,asweshowinnextsubsection§3.2,thesystemisvery
5
closetohavingadoublewell.
Calculatedlatticeconstantsaandcarewellfittedbyquadraticfunctionsin
Sr
Fig.3(b).ItissurprisingthattheamplitudeofSr-displacement,vz,issmaller
Ti
thanthatofTi,vz,forthesoft-modeeigenvectorcalculatedbythefrozen
SrTi
phononmethodatuz=0,butvzbecomeslargerthanvzforuz>0.07asshowninFig.3(c)and(d).
3.2
Effectsofin-planestrainsonSrTiO3
TotalenergiesofSrTiO3asfunctionsoftheamplitudeofatomicdisplacementsuarecalculatedforthetetragonal[001]distortionunderin-planebiaxialcompres-sivestrains(Fig.4(a))andthemonoclinic[110](Fig.4(b))and[100](Fig.4(c))distortionsunderin-planebiaxialtensilestrains.Itisconfirmedthat,forthebi-axialtensilestrainedSrTiO3,the[110]directionofferroelectricpolardistortionisenergeticallymorepreferablethanthatof[100]ascomparedinFig.5.Energygain,thedeferencebetweentotalenergyatu=0anditsminimumvalue,growsupaccordingtobothcompressiveandtensilebiaxialstrains,thoughitiszerointhezero-straina=a0case.Thevalueofu,atwhichthesystemexhibitsminimumtotalenergyandequilibriumstructure,alsogrowsupaccordingtothebiaxialstrains.InFig.6,weshowcalculatedspontaneouspolarizationsfortheequilibriumstructuresunderbiaxialstrainsa=0.95a0∼1.05a0.Underthecompressivestrain,spontaneouspolarizationappearsabove1%andincreaseslinearlyasafunctionofstrain.Underthetensilestrain,spontaneouspolariza-tionappearsalittlebelow1%andincreasesmoregraduallywithstrain.Thesecalculatedresultsrepresentthatthetransitiontemperatureandthespontaneouspolarizationforferroelectricorderingarepredictedtobemonotonicallyincreas-ingfunctionsofbiaxialin-planestrains.Inourcalculatedresults,theenergygainbecomesbarelytheorderofroomtemperature(300K≈26meV)at4%ofcompressiveortensilestrains.The4%ofcompressiveortensilestrainsareim-practicalevenbythethermalnon-equilibriumthin-filmgrowthtechniques,andlargerthanthe1%oftensilestrainunderwhichferroelectricitywasexperimen-tallyfound,[13]thoughitisdifficulttocompareexperimentsandLDA-basedcalculations.Ontheotherhand,Haenietal.couldnotobservetheferroelec-tricityinthe0.9%compressivestrainedSrTiO3thinfilmona(La,Sr)(Al,Ta)O3substrate.[13]Itisalsodifficulttoconcludethat0.9%compressivestrainislessthanthecriticalstrainrequiredtoinduceferroelectricityorthat0.9%isenoughtoinducetheferroelectricity,butasurfaceeffect(oranyothereffects)suppressesit.
Toclarifythestructuraleffectsofin-planebiaxialstrain,weanalyzethedetailedbehaviorofatomicdisplacementsfor4%biaxialcompressiveandtensilestrains:
Predictedresultsforthecompressivestrain,asfunctionsofuz,areplottedinFig.7:(a)totalenergy;(b)latticeconstants;(c)and(d)atomicdisplacements.Ferroelectrictetragonalequilibrium,witha40.2meVstabilizationenergygain,ispredictedatuz=0.456Bohr.Thelatticeconstantc(uz),iswellfittedwith
τ
aquadraticfunction.Normalizedatomicdisplacementsvz/uzchangegreatlyintheinvestigatedrangeofuz,incontrastwithBaTiO3inwhichtheyremainalmostconstanttotheΓ15soft-modeeigenvectorinferroelectricdistortion[16].Intheatomicdisplacementsofthepositivecharge,wecanfindthatthedis-placementofTiisdominantfromparaelectricuz=0statetouz=0.456at
6
250.0tetra-SrTiO3 (valleyline [001])energy [meV]200.0150.0100.050.00.08.07.87.67.47.27.06.80.60.40.20.0-0.2(a)calattice constant[Bohr](b)SrTidisplacementτvz [Bohr](c)OIIIOI-0.4Sr0.80.60.4Ti0.20.0OIII(d)-0.2-0.4OI-0.6-0.80.00.10.20.30.40.50.60.70.80.9uz [Bohr]Figure3:Calculatedresultsforfree-standingSrTiO3regardingatomicdisplace-mentsoftetragonal[001]direction.(a)Calculatedtotalenergy(inmeV)asafunctionofuz(inBohr)(+’sconnectedwithsolidlines).Zerooftheenergyscaleisplacedatthetotalenergyofthecubicstructurewhenuz=0.(b)LatticeconstantsaandcinBohrasfunctionsofuzfittedbyquadraticfunctionsdrawnwithadottedlineandadashedline,respectively.(c)Atomicdisplacements
OIIIOIISrTiOI
asfunctionsofuz.(d)Normalizedatomicdisplace-,vzvz,vz,vz=vz
τ
mentsvz/uzasfunctionsofuz.TheΓ15soft-modeeigenvectorcalculatedbythefrozenphononmethodisadditionallyshownatuz=0.
normalized displacement7
200.0150.0100.0energy [meV]SrTiO3 (out-of-plane)a = 1.00*a0a = 0.99*a0a = 0.98*a0a = 0.97*a0a = 0.96*a0a = 0.95*a0a0 = 7.266 [Bohr] SrTiO3 (in-plane, [110])a = 1.00*a0a = 1.01*a0a = 1.02*a0a = 1.03*a0a = 1.04*a0a = 1.05*a0a0 = 7.266 [Bohr] SrTiO3 (in-plane, [100])a = 1.00*a0a = 1.01*a0a = 1.02*a0a = 1.03*a0a = 1.04*a0a = 1.05*a0a0 = 7.266 [Bohr]50.00.0-50.0-100.0-150.00.00.10.20.30.40.5uz [Bohr]0.60.70.80.9 0.00.20.40.6u [Bohr]0.81.01.2 0.00.20.40.6u [Bohr]0.81.01.2(a)(b)(c)Figure4:Calculatedtotalenergies(inmeV)ofSrTiO3asfunctionsofu=
0.7spontaneous polarization [C/m2] 1.02.03.04.0biaxial compressive strain [%]5.0 0.01.02.03.0biaxial tensile strain [%]4.05.00.60.50.40.30.20.10.0-0.10.0Figure6:Calculatedspontaneouspolarizationsoftheequilibriumstructuresasafunctionofappliedbiaxialstrains.
Table1:Conventionalatomicdisplacivemodes.Slatermode,Lastmode,andtheoctahedron-deformationmode.ThetranslationalmodeandtheΓ25modearealsolisted.
Slatermode
ABOII
−1/−1/
√12√12
Lastmode√20−1/
√20−1/
20
octa.deform.mode01/√√6
−2/
√51/√1/√51/
0√2
−1/
whichthetotalenergybecomesminimum,whereasthedisplacementofSrbe-comeactivatedinsteadofTiintheregionofu>0.456,asshowninFig.7(c).TheremaybearelatednessbetweenthisSr-Ti-displacements-crossingpointandtheferroelectricequilibriumstructurewiththeminimumtotalenergy,thuswementionedthatfree-standingSrTiO3,whichhavethecrossingpointataroundu=0.07,isveryclosetohavingadoublewell.Inthenegativecharge,theatomicdisplacementofOI(≡OII)isdominantcomparedtothatofOIIIthroughouttheinvestigatedrangeofuz.Toobtainthedeeperinsightsaboutthesebehavioroftheatomicdisplacements,weanalyzethepresentlyobtainednormalizedatomicdisplacementsbydecomposingthemintoconventionalthreeΓ15modes:Slatermode,[29]Lastmode,[30]andtheoctahedron-deformationmode,aslistedinTable1.AsshowninFig.8,althoughtheSlatermodeisdominantthroughouttheentireinvestigatedrangeofatomicdisplacements,theLastmodetendtoin-creasewhiletheSlatermodedecreasesmoderatelyasfunctionsoftheamplitudeofatomicdisplacementsuz.ThisresultiscorrespondingtothesightpointedoutbySchimizu[14]andHarada[31]thattheLastmodeisalsoimportantwhiletheSlatermodeplaysakeyroleinthephasetransitionofSrTiO3.
ForSrTiO3underthe4%tensilestrain,thecalculatedresultsoftotalenergy,
9
60.040.020.00.0-20.0-40.0-60.08.07.87.67.47.27.06.80.60.40.20.0-0.2tetra-SrTiO3 (a=0.96*a0)energy [meV](a)lattice constant[Bohr]ca(b)displacementτvz [Bohr]SrTi(c)OIIIOI-0.40.8Sr0.60.4Ti0.20.0OIII(d)-0.2-0.4OI-0.6-0.80.00.10.20.30.40.50.60.70.80.9uz [Bohr]Figure7:CalculatedresultsforSrTiO3under4%biaxialcompressivestrainregardingatomicdisplacementsoftetragonal[001]direction.(a)Calculatedtotalenergy(inmeV)asafunctionofuz(inBohr)(+’sconnectedwithsolidlines).Zerooftheenergyscaleisplacedatthetotalenergyofthecubicstruc-turewhenuz=0.(b)LatticeconstantsinBohr.aisfixed.cisfittedbyquadraticfunctionsofuzanddrawnwithadashedline.(c)Atomicdisplace-SrTiOIOIIOIII
mentsvz,vz,vz=vz,vzasfunctionsofuz.(d)Normalizedatomicdis-τ
placementsvz/uzasfunctionsofuz.
normalized displacement10
1.0dten0.8seompe0.6mcoalcp0.4Slateresdid0.2octahedron-deformationLast0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9uz [Bohr]Figure8:NormalizedatomicdisplacementsoftetragonalSrTiO3aredecom-posedintothreeconventionalmodes:Slatermode(solidline),Lastmode(dashedline),andtheoctahedron-deformationmode(dottedline)asfunctionsofuzinBohr.
latticeconstantsandatomicdisplacementsofx-directionasfunctionsoftheamplitudeofatomicdisplacementsu=
200.0mono-SrTiO3 (a=1.04*a0)[C][A][B]energy [meV]150.0100.050.00.0-50.07.87.67.47.27.00.60.40.20.0-0.2-0.4-0.60.80.60.40.20.0-0.2-0.4-0.6-0.80.0ac(a)lattice constant[Bohr](b)SrTiOIIIOIOIISrdisplacementτvx [Bohr](c)normalized displacement(d)TiOIIIOIOII1.20.20.40.60.8u [Bohr]1.0Figure9:CalculatedresultsforSrTiO3under4%biaxialtensilestrainregardingatomicdisplacementsoftetragonal[110]direction.(a)Totalenergy(inmeV)asafunctionofu(inBohr)(+’sconnectedwithsolidlines).Zerooftheenergyscaleisplacedatthetotalenergyofthecubicstructurewhenu=0.(b)Lattice
τ
constantscandfixedainBohr.(c)Atomicdisplacementsvx.(d)Normalized
τ
atomicdisplacementsvx/uxasfunctionsofu.
12
[A] u = 0.0 Bohr[B] u = 0.443 Bohr[C] u = 0.870 BohrFigure10:Pseudovalencechargedensitymapsinthe(001)crosssectionsandaprojectionforSrTiO3under4%biaxialtensilestrainatthefollowingthreepointsofatomicdistortion;[A]paraelectricstateatu=0,[B]monoclinicequilibriumstateatu=0.443Bohr,and[C]largedisplacementstateatu=0.870Bohr,whichareindicatedontotal-energysurfaceshowninFig.9(a).MapsweredrawnwithVENUS.[32]
13
beregardedasatypicalioniccrystal.Theoriginoftheferroelectricitycanbeconsideredthattherigid-sphere-likeionsgointoopenspacesinducedbythebiaxialtensilestrain.
4Summary
Inthisstudy,weinvestigatedtheeffectofthein-planebiaxialcompressiveandtensilestrainsofSrTiO3ontheferroelectricdistortionbydeterminingthetotal-energysurfaceaccuratelywithourstructureoptimizationtechnique.(a)WeconfirmedthattheferroelectricdistortionisinducedstronglyandCurietemperatureisraisedbyapplyingthebiaxialcompressiveortensilestrainstoSrTiO3.(b)Fromtheresultsofthenormalizedatomicdisplacements,itisclarifiedthattheferroelectricdistortionofSrTiO3isstronglyinfluencedbytheatomicdisplacementscorrespondingtothehardmodeaswellasthesoftmode.(c)Byanalyzingtheobtainednormalizeddisplacementsfor4%biaxialcompressivestrain,weshowedthattheSlatermodeplaysadominantrolewhiletheLastmodeisalsoimportantintheferroelectricphasetransitionofSrTiO3.(d)Thebehaviorofatomicdisplacementassociatedwithferroelectricdistortionwasclarifiedbyanalyzingthechargedensitydistributionineachamplitudeofatomicdisplacementsfor4%biaxialtensilestrain.
Acknowledgements
ComputationalresourceswereprovidedbytheCenterforComputationalMate-rialsScience,InstituteforMaterialsResearch(CCMS-IMR),TohokuUniversity.WethankthestaffatCCMS-IMRfortheirconstanteffort.
References
[1]V.M.Goldschmidt:Akad.OsloMath-Natur.2(1926)7.[2]R.D.Shannon:ActaCryst.A32(1976)751.
[3]K.-H.HellwegeandA.M.Hellwege:Landolt-B¨ornstein:NumericalData
andFunctionalRelationshipsinScienceandTechnology(Springer,Berlin,1981)Vol.16a,pp.59–,NewSeries,GroupIII,Vol.16a,pp.59-.[4]H.UnokiandT.Sakudo:J.Phys.Soc.Jpn.23(1967)546.
[5]P.A.Fleury,J.F.ScottandJ.M.Worlock:Phys.Rev.Lett.21(1968)
16.[6]G.ShiraneandY.Yamada:Phys.Rev.177(1969)858.[7]B.OkaiandJ.Yoshimoto:J.Phys.Soc.Jpn.39(1975)162.[8]K.A.M¨ullerandH.Burkard:Phys.Rev.Lett.26(1970)13.
[9]R.Viana,P.Lunkerheimer,J.Hemberger,R.BohmerandA.Loidl:Phys.
Rev.B50(1994)601.
14
[10]M.Itoh,R.Wang,Y.Inaguma,T.Yamaguchi,Y.J.ShanandT.Naka-mura:Phys.Rev.Lett.82(1999)3540.[11]J.H.Barrett:Phys.Rev.86(1952)118.
[12]E.Sawaguchi,A.KikuchiandY.Kodera:J.Phys.Soc.Jpn.18(1963)
459.[13]J.H.Haeni,P.Irvin,W.Chang,R.Uecker,P.Reiche,Y.L.Li,S.Choud-hury,W.Tian,M.E.Hawley,B.Craigo,A.K.Tagantsev,X.Q.Pan,S.K.Streiffer,L.Q.Chen,S.W.Kirchoefer,J.LevyandD.G.Schlom:Nature430(2004)758.[14]T.Schimizu:SolidStateCommun.102(1997)523.
[15]A.Antons,J.B.Neaton,K.M.RabeandD.Vanderbilt:Phys.Rev.B71
(2005)024102.[16]T.Hashimoto,T.Nishimatsu,H.Mizuseki,Y.Kawazoe,A.SasakiandY.
Ikeda:Jpn.J.Appl.Phys.43(2004)6785.[17]R.D.King-SmithandD.Vanderbilt:Phys.Rev.B49(1994)5828.[18]X.Gonze,J.-M.Beuken,R.Caracas,F.Detraux,M.Fuchs,G.-M.Rig-nanese,L.Sindic,M.Verstraete,G.Zerah,F.Jollet,M.Torrent,A.Roy,M.Mikami,P.Ghosez,J.-Y.RatyandD.C.Allan:Comput.Mater.Sci.25(2002)478.[19]M.Teter:Phys.Rev.B48(1993)5031.
[20]M.Bernasconi,G.L.Chiarotti,P.Focher,S.Scandolo,E.TosattiandM.
Parrinello:J.Phys.Chem.Solids56(1995)501.[21]S.Goedecker,M.TeterandJ.Hutter:Phys.Rev.B54(1996)1703.[22]D.M.CeperleyandB.J.Alder:Phys.Rev.Lett.45(1980)566.[23]A.OkazakiandM.Kawaminami:Mater.Res.Bull.8(1973)545.[24]R.E.Cohen:Nature358(1992)136.
[25]R.D.King-SmithandD.Vanderbilt:Phys.Rev.B47(1993)1651.[26]R.Resta:Rev.Mod.Phys.66(1994)9.
[27]E.Sawaguchi,A.KikuchiandY.Kodera:J.Phys.Soc.Jpn.17(1962)
1666.[28]N.SaiandD.Vanderbilt:Phys.Rev.B62(2000)13942.[29]J.C.Slater:Phys.Rev.78(1950)748.[30]J.T.Last:Phys.Rev.105(1957)1740.
[31]J.Harada,J.D.AxeandG.Shirane:ActaCrystallogr.Sect.AA26
(1970)608.[32]F.Izumi:J.Crystallogr.Soc.Jpn.44(2002)380[inJapanese].
15
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务