数列极限标准定义:对数列{xn},若存在常数a,对于任意ε>0,总存在正整数N,使得当n>N时,|xn-a|&ε成立,那么称a是数列{xn}的极限。
数列极限如何进行证明证明:对任意的ε>0,解不等式
│1/√n│=1/√n&ε
得n>1/ε2,取N=[1/ε2]+1。
于是,对任意的ε>0,总存在自然数取N=[1/ε2]+1。
当n>N时,有│1/√n│&ε
故lim(n->∞)(1/√n)=0。
懂视网【www.51dongshi.com】
Copyright © 2019- 99spj.com 版权所有 湘ICP备2022005869号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务